Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Схематическое представление синтеза наночастиц для SERS и SERRS. (a) Серебряные наночастицы (I) были синтезированы с применением лимонной кислоты. Затем был добавлен краситель 3,5-диметокси-4-(6’-азобензотриазолил)фенол (II) в количестве достаточном для образования монослоя на поверхности наночастиц (III). Добавление олигонуклеотидов с заданной последовательностью (IV) для образования конъюгатов краситель/олигонуклеотид-наночастицы (V). (b) Образование массива из конъюгатов ДНК-серебрянные наночастицы. Было изготовлено 2 образца модифицированных наночастиц с различными, некомплиментарными последовательностями нуклеотидов (1 и 2). При этом целевой олигонуклеотид комплиментарен обоим последовательностям нуклеотидов, благодаря чему происходит направленная агрегация наночастиц.
Рис.2. Данные УФ-вид спектроскопии для покрытых ДНК наночастиц серебра. (a) Исходный спектр наночастиц серебра (1) (lmax = 400 nm), модифицированные ДНК наночастицы (2) (lmax = 417 nm) и массив наночастиц после часового процесса сборки (гибридизации с целевой ДНК) (3) (lmax = 550 nm). (b) Зависимость затухания при 417 нм от температуры: образцы, содержащие ДНК-цепи 5’(10 x A)-TCTCAACTCGTA и 5’(10 x A)-CGCATTCAGGAT и гибридизованные с полностью комплиментарной последовательностью 5’-TACGAGTTGAGAATCCTGAATGCG (I) (Tm = 50.27 C), с последовательностью, у которой заменена центральная часть целевого олигонуклеотида 5’-TACGAGTTGAGACTCCTGAATGCG (II) (Tm = 48.07 C) и с последовательностью с изменённым 30-ым конечным нуклеотидом 5’-TACGAGTTGAGAATCCTGAATGCT (III) (Tm = 46.27 C).
Рис.3. SERRS спектр модифицированных наночастиц серебра. (a) Спектр после гибридизации в течение часа с полностью комплиментарной целевой ДНК 5’-TACGAGAGAATCCTGAATGCG (1) и наполовину комплиментарной целевой ДНК 5’-TACGAGTTGAGACGCATTGAGGAT (2). (b) Изменение интенсивности при указанном значении энергии в течение 60 минут.
Рис.4. SERRS спектр наночастиц с различными некоплиментарными олигонуклеотидами (последовательность A: 5’-AAAAAAAAAATACAGCACG; последовательность B: 5’-AAAAAAAAAATCTCAACTC; последовательность C: 5’-AAAAAAAAAAGGACTACCT). Во всех случаях последовательность целевой ДНК комплиментарна только двум из трёх ДНК, связанных с наночастицами.

Усиленное комбинационное рассеяние на нанокластерах серебрa

Ключевые слова:  SERRS, ДНК, наночастицы серебра, рамановская спектроскопия

Опубликовал(а):  Смирнов Евгений Алексеевич

15 сентября 2008

Впервые метод поверхностного усиленного комбинационного рассеяния (Surface enhanced Raman scattering – SERS) был опробован более 30 лет назад в 1974 году, когда наблюдалось усиленное рекомбинационное рассеяние адсорбированного пиридина на поверхности серебряного электрода. С тех пор были проведены многочисленные исследования, посвящённые данной тематике, с различными поверхностями. Как известно, зернистая серебряная поверхность, полученная путём агрегации наночастиц Ag, обладает наибольшим откликом. Однако подход, позволяющий проводить контролируемую агрегацию наночастиц серебра, что важно с точки зрения практического применения метода, в частности, через взаимодействие с биомолекулами такими как ДНК, до сих пор не был изучен. Наночастицы серебра идеально подходят и для метода усиленного поверхностного резонанса комбинационного рассеяния (SERRS), так как они просты в получении и образуют шероховатую поверхность при агрегации. При этом для получения максимального отклика необходимо, чтобы агрегирующие наночастицы образовывали дискретные кластеры.

Авторы работы использовали азо-соединения (красители) в качестве монослойного покрытия для наночастиц серебра. Далее к модифицированной поверхности наночастиц прикреплялись молекулы ДНК (рис.1а). После создания нескольких образцов наночастиц с молекулами ДНК из различных нуклеотидных последовательностей пробы смешивали так, как показано на рисунке 1b. Агрегацию наночастиц серебра можно было проследить по изменению цвета раствора от жёлтого до зелёно-синего (рис.2). Данные SERRS анализа представлены на рисунке 3. Данные представленные на рисунке 4 демонстрируют, что сигналом в методе SERRS можно управлять, используя подходящие комплиментарные последовательности ДНК, и что нет необходимости перед анализом удалять из раствора наночастиц серебра, которые не участвуют в процессе гибридизации.

Таким образом, разработанная учёными методика – ещё один шаг к пониманию химической сути феномена поверхностных явлений, исследование которых на сегодняшний момент представляет огромный научный интерес, и расширению возможностей спектроскопии.




Комментарии
Разработанная - это громко сказано.
Адаптированная скорее.

ЕМНИП, этим (созданием трёхмерных наноструктур при помощи гибридизации ДНК) уже несколько лет занимаются в ИБХ.

Были заметки про то же самое с квантовыми точками (в смысле образование упорядоченных структур).

Но вообще интересно, какая химия у них использована для конъюгирования ДНК и наночастиц.

Кто с доступом, поделитесь, пожалуйста, статьёй.
Смирнов Евгений Алексеевич, 16 сентября 2008 23:13 
на счёт доработанной методики - согласен...
интересно всё-таки, что для различных методов исследования поверхности придумываются столь изощрённые методы исследования...ведь по существу данную статью с некоторыми доработками можно отнести к разряду методик для стандартизации измеренных величин различных поверхностных явлений...

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Золотые наносферы
Золотые наносферы

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Нитрид-борные нанокомпозиты для доставки лекарств. 2D наноматериалы помогут создать портативную искусственную почку. Обзор по cтрейнтронике. Доставка лекарств с помощью борнитридных фуллеренов. Речные фуллерены. Научный хит-парад 2018 по версии APS

Лекция Константина Севернинова: от бактериального иммунитета к геномному редактированию
20 декабря состоялась лекция молекулярного биолога, профессора Константина Северинова.
На лекции обсуждались вопросы: какова природа генетических болезней, и сможем ли мы лечить их в ближайшем будущем; что такое система CRISPR-Cas, и как бактерии используют её для борьбы с вирусами, и как изучение этого необычного механизма привело к созданию мощного инструмента геномного редактирования.

Наносистемы: физика, химия, математика (2018, том 9, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume9/9-6
Там же можно скачать номер журнала целиком.

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Эффект лотоса
Никельшпарг Эвелина Ильинична
Кратко и поэтично об одном из самых известных эффектов, который так любят школьники и участники наноолимпиады - об эффекте лотоса...

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.