Warning: Cannot modify header information - headers already sent by (output started at /nano-data/main/resources.obj.php:5902) in /nano-data/main/resources.obj.php on line 5089
Однофазная интеркаляция/деинтеркаляция лития в наноразмерном LiFePO4
Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Рентгенограммы образцов LiFePO4 S40 и S140: (a) общий вид профиля, (b) увеличение пика (211/020), демонстрирующее сдвиг пика.
Рис.2. Описание образца S40: (a) Объёмное и суммарное распределение частиц по размерам, (b) SEM-изображение, (с) HRTEM-изображение одной наночастицы, вставка: электронная дифракция.
Рис.3. Уточнение профиля функции с помощью метода Ритвельда для образца S40. Экспериментальные данные (пунктирная линия), профиль, полученный при уточнении (сплошная линия) и разностная кривая. Вставки: средние наблюдаемые форма и размер доменов когерентного рассеяния излучения.
Рис.4.Электрохимическое поведение образца S40 и образца LiFePO4 с углеродными наночастицами: (a) Кривые заряда/разряда при скорости С/10 (1 Li+ за 10 часов) в течение 60 циклов и сравнение параметров, если скорость заряда/разряда С. (b) Кривые заряда/разряда при различных скоростях для устройства на основе Li/углеродные наночастицы нано-LiFePO4. (с) Сравнение параметров для устройств (a) и (b).
Рис.5. Электрохимическое и структурное описание образцов LiFePO4 S40: (a) Кривые заряда/разряда при скорости С/40 (1 Li+ за 40 часов) образца S40 (красная линия) в сравнение с двуфазным профилем образца S140 (синяя линия). (b) РФА in situ: сдвиг пиков свидетельствует об образовании твёрдого раствора во время процессов заряда/разряда.
Рис.6. Параметры элементарной ячейки как функция извлечённого лития в образце S40.

Однофазная интеркаляция/деинтеркаляция лития в наноразмерном LiFePO4

Ключевые слова:  Li-Ion, LiFePO4, аккумуляторы, катодный материал, нанотехнологии, наночастицы, Оливин

Опубликовал(а):  Смирнов Евгений Алексеевич

07 сентября 2008

Всё большую роль в нашей повседневной жизни играют миниатюрные источники тока. Если несколько пятилетий назад таковым являлись обычные батарейки, то теперь каждый цивилизованный человек, осознающий экологические проблемы современности, предпочитает одноразовому использованию батареек многократное аккумуляторов. Да и автомобильные гиганты (к сожалению, не российские) озабочены проблемой внедрения достаточно мощных аккумуляторов в свои новые авто (к примеру, Nissan, Lexus, BMW – чей проект X7 был некоторое время образцом для подражания) и создания гибридных авто со значительно сниженной эмиссией вредных газов, автозапчасти к которым значительно дешевле. В данную область науки вкладывается большая часть прибыли всех заинтересованных компаний. Однако не всё так просто, как кажется на первый взгляд. Существует ряд недостатков и проблем, связанных с производством аккумуляторных батарей, которые пока перекрываются оптимальным сочетанием цена-ёмкость-габариты. Наиболее важная проблема – создание такого материала положительного электрода, который мог бы при приложении напряжения «запасать» в себе достаточно большое количество Li, при этом не выходя за область своей термодинамической стабильности.

Классические электроды для Li-ионной технологии работают путём однофазного и двухфазного процессов интеркаляции/деинтеркаляции. При этом однофазный процесс наиболее выгоден с точки зрения практического применения данной технологии.

Авторы работы путём низкотемпературного осаждения из раствора получили частицы размером 40, 70 и 120 нм (S40,S70 и S140, соответственно). На рисунке 1 представлен рентгенофазовый анализ полученных образцов. Также было получено распределение по размерам для образца S40 и выполнена электронная дифракция, что подтвердило высокую кристалличность образцов (рис.2). В структуре оливина существует 2 типа позиций: M1 – LiO6 и M2 – FeO6. Чтобы оценить распределение катионов по позициям (на что указывает сдвиг одного из пиков на рис.1) были выполнены анализ данных РФА методом Ритвельда и нейтронная дифракция для полученных образцов. Таким образом, состав образца S40 можно записать как (vac0.15Li0.79Fe0.06)M1(vac0.10Fe0.90)M2PO4, а S70 – (vac0.07Li0.89Fe0.04)M1(vac0.08Fe0.92)M2PO4. Далее был проведён ряд экспериментов по изучению электрохимических характеристик полученных материалов (рис.4-5), aтакже исследована зависимость параметров решётки от количества интеркалированного лития (рис.6), прекрасно описывающаяся правилом Вегарда. Измеренная ёмкость составила 120 мА*ч*г-1, тогда как теоретический предел для данного рода материалов составляет 170 мА*ч*г-1.

Учёные полагают, что замещение части железа, например, на марганец в структуре оливина позволит получать менее напряжённые структуры, при этом деинтеркаляция лития будет проходить по однофазному механизму. Успехи в данной области науки позволят в скором будущем создать новые, более ёмкие, безопасные и долгоживущие Li-ионные батареи, применение которых поможет сократить загрязнение окружающей среды и увеличить эффективность работы устройств.


Источник:




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Бездна Наномира
Бездна Наномира

Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»
Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

I МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ
14-15 октября 2019 года состоится школа - конференция молодых ученых - I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019).

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.