Warning: Cannot modify header information - headers already sent by (output started at /nano-data/main/resources.obj.php:5902) in /nano-data/main/resources.obj.php on line 5089
Однофазная интеркаляция/деинтеркаляция лития в наноразмерном LiFePO4
Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Рентгенограммы образцов LiFePO4 S40 и S140: (a) общий вид профиля, (b) увеличение пика (211/020), демонстрирующее сдвиг пика.
Рис.2. Описание образца S40: (a) Объёмное и суммарное распределение частиц по размерам, (b) SEM-изображение, (с) HRTEM-изображение одной наночастицы, вставка: электронная дифракция.
Рис.3. Уточнение профиля функции с помощью метода Ритвельда для образца S40. Экспериментальные данные (пунктирная линия), профиль, полученный при уточнении (сплошная линия) и разностная кривая. Вставки: средние наблюдаемые форма и размер доменов когерентного рассеяния излучения.
Рис.4.Электрохимическое поведение образца S40 и образца LiFePO4 с углеродными наночастицами: (a) Кривые заряда/разряда при скорости С/10 (1 Li+ за 10 часов) в течение 60 циклов и сравнение параметров, если скорость заряда/разряда С. (b) Кривые заряда/разряда при различных скоростях для устройства на основе Li/углеродные наночастицы нано-LiFePO4. (с) Сравнение параметров для устройств (a) и (b).
Рис.5. Электрохимическое и структурное описание образцов LiFePO4 S40: (a) Кривые заряда/разряда при скорости С/40 (1 Li+ за 40 часов) образца S40 (красная линия) в сравнение с двуфазным профилем образца S140 (синяя линия). (b) РФА in situ: сдвиг пиков свидетельствует об образовании твёрдого раствора во время процессов заряда/разряда.
Рис.6. Параметры элементарной ячейки как функция извлечённого лития в образце S40.

Однофазная интеркаляция/деинтеркаляция лития в наноразмерном LiFePO4

Ключевые слова:  Li-Ion, LiFePO4, аккумуляторы, катодный материал, нанотехнологии, наночастицы, Оливин

Опубликовал(а):  Смирнов Евгений Алексеевич

07 сентября 2008

Всё большую роль в нашей повседневной жизни играют миниатюрные источники тока. Если несколько пятилетий назад таковым являлись обычные батарейки, то теперь каждый цивилизованный человек, осознающий экологические проблемы современности, предпочитает одноразовому использованию батареек многократное аккумуляторов. Да и автомобильные гиганты (к сожалению, не российские) озабочены проблемой внедрения достаточно мощных аккумуляторов в свои новые авто (к примеру, Nissan, Lexus, BMW – чей проект X7 был некоторое время образцом для подражания) и создания гибридных авто со значительно сниженной эмиссией вредных газов, автозапчасти к которым значительно дешевле. В данную область науки вкладывается большая часть прибыли всех заинтересованных компаний. Однако не всё так просто, как кажется на первый взгляд. Существует ряд недостатков и проблем, связанных с производством аккумуляторных батарей, которые пока перекрываются оптимальным сочетанием цена-ёмкость-габариты. Наиболее важная проблема – создание такого материала положительного электрода, который мог бы при приложении напряжения «запасать» в себе достаточно большое количество Li, при этом не выходя за область своей термодинамической стабильности.

Классические электроды для Li-ионной технологии работают путём однофазного и двухфазного процессов интеркаляции/деинтеркаляции. При этом однофазный процесс наиболее выгоден с точки зрения практического применения данной технологии.

Авторы работы путём низкотемпературного осаждения из раствора получили частицы размером 40, 70 и 120 нм (S40,S70 и S140, соответственно). На рисунке 1 представлен рентгенофазовый анализ полученных образцов. Также было получено распределение по размерам для образца S40 и выполнена электронная дифракция, что подтвердило высокую кристалличность образцов (рис.2). В структуре оливина существует 2 типа позиций: M1 – LiO6 и M2 – FeO6. Чтобы оценить распределение катионов по позициям (на что указывает сдвиг одного из пиков на рис.1) были выполнены анализ данных РФА методом Ритвельда и нейтронная дифракция для полученных образцов. Таким образом, состав образца S40 можно записать как (vac0.15Li0.79Fe0.06)M1(vac0.10Fe0.90)M2PO4, а S70 – (vac0.07Li0.89Fe0.04)M1(vac0.08Fe0.92)M2PO4. Далее был проведён ряд экспериментов по изучению электрохимических характеристик полученных материалов (рис.4-5), aтакже исследована зависимость параметров решётки от количества интеркалированного лития (рис.6), прекрасно описывающаяся правилом Вегарда. Измеренная ёмкость составила 120 мА*ч*г-1, тогда как теоретический предел для данного рода материалов составляет 170 мА*ч*г-1.

Учёные полагают, что замещение части железа, например, на марганец в структуре оливина позволит получать менее напряжённые структуры, при этом деинтеркаляция лития будет проходить по однофазному механизму. Успехи в данной области науки позволят в скором будущем создать новые, более ёмкие, безопасные и долгоживущие Li-ионные батареи, применение которых поможет сократить загрязнение окружающей среды и увеличить эффективность работы устройств.


Источник:




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Космический корабль
Космический корабль

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.