Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Нанотехнология и самоорганизация в лекции нобелевского лауреата Жан-Мари Лена

Ключевые слова:  нанотехнология, самоорганизация, супрамолекулярная химия, тьютору, Фоторепортаж

Опубликовал(а):  Гудилин Евгений Алексеевич

06 июля 2008

Материал лекции публикуется с разрешения автора для размещения на данном сайте. При копировании и любом другом использовании лекции следует проконсультироваться с правобладателем материала, а также, помимо гиперссылки на данную публикацию, указать название и автора оригинального источника. Лекция "Нанонаука и нанотехнология. Подход самоорганизации." была публично прочитана 26 июня на пленарной секции Санкт-Петербургского научного форума "Наука и общество. Нанотехнологии: исследования и образование" — III Петербургская встреча лауреатов Нобелевской премии.

Лекция была посвящена обсуждению принципов и проявлению самосборки и самоорганизации в приложении к новым супрамолекулярным соединениям, которые могут найти практическое применение при создании сверхъемких (квантовых) элементов памяти, в спинтронике, при разработке искусственных "мышц" - силовых "наномашин". Основной химический акцент в лекции был сделан на рассмотрении процессов комплексообразования и его последствиях - селективном формировании сложных повторяющихся молекулярных структур и изменении конфигурации макромолекул, позволяющих целенаправленно формировать надмолекулярные ансамбли.

Для справки: ЛЕН, ЖАН-МАРИ (Lehn, Jean-Marie) (р. 1939) (Франция). Нобелевская премияпо химии, 1987 (совместно с Д.Крамом и Ч.Педерсоном).

Родился 30 сентября 1939 в Розхейме, старинном эльзасском городке. В 11-летнем возрасте поступил в среднюю школу, Коллеж Фреппель в Оберне, маленьком городке в 5 километрах от Розхейма. Обучение в школе с 1950 по 1957 было классическим: латынь, греческий, немецкий и английский языки, французская литература, и на последнем году обучения – философия. Однако он увлекся химией. В июле 1957 получил степень бакалавра в области философии, а в сентябре того же года – и в области естественных наук. В Страсбургском университете он начал с физики и химии. Органическая химия произвела на него такое впечатление, что он начал экспериментировать дома. В октябре 1960 приступил к выполнению диссертационной работы, связанной с изучением конформационных и физико-химических свойств тритерпенов. Он хорошо освоился с методом ядерного магнитного резонанса, что помогло ему в дальнейших исследованиях. Получив степень доктора философии в июле 1963, Лен год стажировался в лаборатории Р.Б.ВудвордаР.Б.Вудворда (Нобелевский лауреат, 1965) в Гарвардском университете, где принял участие в выдающемся предриятии Вудворда – синтезе витамина В12. Прослушал курс квантовой механики и выполнил первые вычисления у Р.ХофманаР.Хофмана, в 1964 оказался свидетелем и первых шагов по созданию правил Вудворда – Хофмана, приведших Р.Хофмана к Нобелевской премии (1981). После возвращения в Страсбург Лен начал самостоятельно работать в области физической органической химии, где мог сочетать приобретенный опыт по органической химии и квантовой теории со знанием физических методов. Это характеризовало работу его лаборатории, которая была создана после назначения Лена в 1966 ассистент-профессором химического факультета Страсбургского университета, до 1970. Предстояло сделать решающий шаг – найти точку приложения накопленного научного потенциала. Лен заинтересовался процессами, происходящими в нервной системе, связанными с распределением ионов натрия и калия относительно клеточной мембраны. Он намеревался изобрести химические вещества, которые воздействовали бы на процесс ионного транспорта. Поиски таких соединений привели Лена к созданию криптандов, работа над которыми началась в октябре 1967. В 1960-х американец Чарлз Педерсен случайно синтезировал соединение, названное краун-эфиром (crown – корона) за особенность его структуры – пустое внутри и подвижное кольцо из углеродных атомов, связанное через мостики кислородными атомами. Варьируя размер цикла, он установил что краун-эфиры способны избирательно связывать некоторые катионы, помещая их в центр своей «короны». Его открытие было расширено Леном и американцем Дональдом Крамом. Результатом параллельных усилий трех исследователей был синтез молекул, которые способны избирательно реагировать с другими молекулами, подобно тому, как ферменты связываются с другими природными молекулами. Лен расширил круг краун-эфиров, синтезированных Педерсеном, а также создал новые трехмерные структуры, названные криптандами (от греческого слова, означающего «скрытый»), которые также способны селективно связывать ионы металлов. Далее он приготовил молекулу, которая избирательно взаимодействует с ацетилхолином, важным передатчиком нервных импульсов. Его работы создали реальные предпосылки конструирования искусственных ферментов, которые, возможно, станут эффективнее их природных прототипов. Краун-эфиры и криптанды рассматривались сначала как модели систем, способных к избирательному связыванию. Оказалось, что они могут служить и моделями биологических транспортных систем. Далее, вскрылась роль таких соединений при моделировании ферментов. Краун-эфиры оказались первыми синтетическими аналогами природных веществ, осуществляющих перенос ионов щелочных металлов через клеточную мембрану. Эти переносчики, называемые ионофорами, действуют по тому же принципу, что и краун-эфиры, хотя и имеют более сложную структуру. Природные переносчики катионов относятся к так называемым переключаемым ионофорам. Пройдя внутрь клетки, они под влиянием определенных воздействий выбрасывают катион и быстро возвращаются за следующим. Скорость таких челночных операций может достигать нескольких тысяч в секунду, причем нередко они происходят против градиента концентрации. Эта область исследований быстро расширялась, развившись в то, что Лен в последствии назвал термином «супрамолекулярная химия». Супрамолекулярная химия изучает всесторонние аспекты взаимодействий молекулы «гостя» с молекулой «хозяина». Что же такое супрамолекулярная химия? Лен определил ее как химию межмолекулярных связей, изучающую ассоциацию двух и более химических частиц, а также структуру подобных ассоциаций. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело, главным образом, с реакциями, в которых происходят разрыв и образование валентных связей, то объектом изучения супрамолекулярной химии служат почти исключительно невалентные взаимодействия: водородная связь, электростатические взаимодействия, гидрофобные силы, структуры «без связи». Как известно, энергия невалентных взаимодействий на 1–2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных и вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям – характерное свойство всех биологических молекулярных структур: нуклеиновых кислот, белков, ферментов, переносчиков частиц. За короткий срок супрамолекулярная химия развилась в обширную область знаний, включающую несколько направлений. Важнейшим направлением исследований последнего десятилетия стал синтез соединений, способных образовывать комплексы типа «гость-хозяин» с органическими молекулами. Это нужно для разделения и очистки органических веществ, их активации, для создания лекарственных препаратов нового поколения и решения множества других научных и прикладных задач. Эти исследования Лена были впоследствии отмечены Нобелевской премией (1987, совместно с Д.Крамом и Ч.Педерсеном) «за разработку и применение молекул со структурно специфическими взаимодействиями с высокой селективностью». В 1976 Лен начал новую серию исследований в области искусственного фотосинтеза, запасания и химического превращения солнечной энергии. Он был выдвинут на должность профессора в начале 1970 и стал полным профессором в октябре того же года. Два весенних семестра 1972 и 1974 Лен – приглашенный профессор Гарвардского университета, читал лекции и руководил научным проектом. В 1979 стал руководителем лаборатории в Коллеж де Франс. Главные усилия Лена в настоящее время направлены на изучение супрамолекулярной самоорганизации, построения и свойств «программированных» супрамолекулярных систем. Результаты научной работы Лена, которую вместе с ним в течение двадцати лет выполняли около 150 научных сотрудников из более чем двадцати стран, были изложены в 400 публикациях и обзорных статьях. На протяжении нескольких лет Лен работал в качестве приглашенного профессора в других институтах: в Федеральном технологическом институте в Цюрихе, университетах Кембриджа, Барселоны и Франкфурта.

Прикрепленные файлы:
1.wav (560.04 Кб.)

Фрагмент выступления Нобелевского лауреата Жан-Мари Лена.

 
2.wav (11.88 Мб.)

Фрагмент выступления Нобелевского лауреата Жан-Мари Лена.

 

Get the Flash Player to see this player.


Начало выступления Нобелевского лауреата Жан-Мари Лена (фрагмент).
скачать встроить

Источник: Нанометр



Комментарии
Гольдт Илья, 06 июля 2008 23:28 
здорово!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нано Нью-Йорк
Нано Нью-Йорк

Приглашение на вебинар «Комбинация АСМ и оптических методик: новые достижения и приложения»
НТ-МДТ Спектрум Инструментс приглашает Вас принять участие в бесплатном вебинаре «Комбинация АСМ и оптических методик: новые достижения и приложения»

Наносистемы: физика, химия, математика (2019, том 10, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-1
Там же можно скачать номер журнала целиком.

XXI Менделеевский съезд по общей и прикладной химии,
Уважаемые коллеги! Приглашаем вас принять участие в работе XXI Менделеевского съезда по общей и прикладной химии, который состоится с 9 по 13 сентября 2019 года в Санкт-Петербурге и станет одним из основных мероприятий Международного года Периодической таблицы химических элементов, провозглашённого ООН в декабре 2017 г.
Проводится под эгидой Международного союза по теоретической и прикладной химии (IUPAC).

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.