Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Научные группы: Лаборатория оксидных материалов

Заведующая лабораторией Политова Екатерина Дмитриевна, доктор физико-математических наук, профессор
Организация
Ключевые слова
Область деятельности
    физико-химия оксидных материалов и композитов
Научные интересы
  • методы химической гомогенизации
  • нелинейные диэлектрики
Контактная информация
Телефон 8 495 917-39-03 (123)
Факс 8 495 975-2490
Электронная почта politova@cc.nifhi.ac.ru
Индекс 105064
Адрес г.Москва, ул. Воронцово поле, 10
Страница научной группы в интернете
Научный коллектив
  • Рогинская Юлиана Еремеевна, ведущий научный сотрудник, кандидат наук
  • Варакин Владимир Николаевич, ведущий научный сотрудник, кандидат наук
  • Галямов Булат Шайхиевич, ведущий научный сотрудник, кандидат наук
  • Голубко Наталья Владимировна, старший научный сотрудник, кандидат наук
  • Калева Галина Михайловна, старший научный сотрудник, кандидат наук
  • Корчагина Светлана Константиновна, старший научный сотрудник, кандидат наук
  • Мосунов Александр Викторович, старший научный сотрудник, кандидат наук
  • Павлова-Веревкина Ольга Борисовна, ведущий научный сотрудник, кандидат наук
  • Политова Екатерина Дмитриевна, заведующая лабораторией, профессор, доктор наук
  • Стефанович Сергей Юрьевич, ведущий научный сотрудник, кандидат наук
Описание

Направления исследований:

  • синтез и коллоидно-химические свойства гидрозолей (гидр)оксидов металлов, строение и форма нанокристаллов, закономерности коагуляции, коллоидные кристаллы, оксидные и гибридные наноматериалы.
  • синтез, строение и свойства электрохимически активных материалов (наноструктурированные пленки оксидов металлов и композитов).
  • развитие метода генерации второй гармоники лазерного излучения (ГВГ), широко используемого в работах по выявлению и изучению нецентросимметричных фаз, ответственных за нелинейно-оптические, сегнето/пьезоэлектрические и другие важные для функциональных материалов свойства.
  • получение оксидов в виде порошков и пленок с использованием в качестве исходных алкоксидов металлов.
  • исследование особенностей получения оксидов методом твердофазного синтеза, изучение структуры, микроструктуры и электропроводящих свойств высокотемпературных сверхпроводников, сегнетоэлектриков – релаксоров, ионо- и смешаннопроводящих керамик.
  • химия сегнетомагнетиков (магнитно-упорядоченных сегнетоэлектриков), сегнетоэлектриков и родственных материалов. Основное внимание уделяется исследованию процессов фазообразования, структуры, фазовых переходов и диэлектрических свойств оксидов в низко-, ВЧ-, и СВЧ диапазонах частот.
  • изучение методом диэлектрической спектроскопии связи сегнетоэлектрических, релаксационных и ионопроводящих свойств кристаллов и керамических композиций с особенностями их кристаллической структуры
  • разработка методов получения многокомпонентных оксидов и композитов,
  • исследование их структуры, микроструктуры и физико-химических свойств,
  • установление корреляций между составом, условиями получения, структурой, микроструктурой и функциональными свойствами (сегнето-, пьезоэлектрическими, сверхпроводящими, каталитическими, зарядзапасающими, мембранными и др.) многокомпонентных оксидов.

Объекты исследований:

  • Сегнетоэлектрики
  • пьезоэлектрики
  • магнитноупорядоченные сегнетоэлектрики
  • выскотемпературные сверхпроводники, на основе PbTiO3, Pb(Mg,Nb)O3, Pb(Sc,Nb)O3, Pb(Zr,Ti)O3, Pb(Fe,Nb)O3, YBa2Cu3O7-d, ионо- и смешаннопроводящие оксиды на основе LaGaO3, La2Mo2O9 и др.
  • Нелинейно-оптические, сегнетоэлектрические оксиды, получаемые кристаллизацией из стеклообразующих смесей: K2O-Nb2O5-SiO2, K2O-TiO2-P2O5-SiO2, Re2O3-B2O3-SiO2, Re2O3-B2O3-GeO2.
  • Стабильные гидрозоли TiO2, AlOOH, ZrO2, CeO2, SnO2, La2O3×H2O.
  • Наноструктурированные пленки на основе SnO2.
Оборудование
  • автоматизированные комплексы для измерения электропроводящих и диэлектрических параметров керамик (20 Гц - 1 МГц), (-196-20оС и 20-900oC), относительного линейного расширения керамик и потерь массы в разных газовых средах (20-900оС
  • Высокотемпературные печи «Nabertherm»
  • рентгеновские дифрактометры ДРОН-3М
  • термоанализатор «Netzsch»
  • установка для изучения эффекта генерации второй оптической гармоники лазерного излучения порошков (20-600oC)
Проекты и гранты
РФФИ (N 06-03-32362) "Сегнетоэлектрические сложные перовскиты с магнитным упорядочением: изучение взаимосвязи состав-структура–свойства-условия получения. "

РФФИ (N 06-03-32237) "Разработка принципов выделения фракций однородных нанокристаллов TiO2 из гидрозолей"

РФФИ (N 05-08-18127) "Мембранная технология окислительной конденсации метана"

РФФИ (N 05-03-32154) "Методы получения, строение и свойства нелинейно-оптических галоген-боратов в моно-, поликристаллическом и стеклообразном состояниях"

РФФИ (N 04-03-32094) "Оксидные материалы с высокой ионной и смешанной ионно-электронной проводимостью на основе гетерозамещенных перовскитов"

РФФИ (N 05-03-33129) "Создание новых тонкопленочных электродов с различными типами наноструктур для литий-ионных аккумуляторов и суперконденсаторов"

МНТЦ (N 3234) "Разработка высокоэффективных кислород-проводящих мембран и малогабаритных генераторов чистого синтез-газа на их основе"

Наиболее значимые публикации
Golubko, N.V., Kaleva, G.M., Roginskaya, Yu.E., Politova, E.D. , "Sol-gel synthesis of lanthanum-gallate-based ceramic coatings" // Inorganic Materials , 2007, 43 (11), 1235 - 1240

Politova, E.D., Aleksandrovskii, V.V., Zaitsev, S.V., Kaleva, G.M., Mosunov, A.V., Stefanovich, S.Yu., Avetisov, A.K., (...), Kim, T.H. , "Oxygen permeability of mixed conducting perovskite lanthanum gallate - Based ceramics " // Materials Science Forum, 2006, 514-516 (PART 1), 412 - 416

Ivanov, S.A., Kaleva, G.M., Aleksandrovskiǐ, V.V., Politova, E.D., Eriksson, S. , "Specific features of the structure and weight loss of aliovalent- substituted oxides based on lanthanum gallate (La,Sr)(Ga,Fe,Mg)O3 - Y " // Crystallography Reports , 2006, 51 (2), 212 - 218

Politova, E.D., Shvartsman, V.V., Kholkin, A.L., Kaleva, G.M., Mosunov, A.V. , "Processing, investigation of structure, microstructure, dielectric and piezoelectric properties of PbMg1/3Nb2/3O 3-PbTiO3 ceramics doped with the PbMg1/2W 1/2O3 additive " // Ferroelectrics , 2005, 314, 27 - 35

Магнитные ежики
Магнитные ежики

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ» (Интересные научные события 2020 года от Американского физического общества (APS): Новый век сверхпроводимости. Магические углы в графене. Новые рекорды LIGO и Virgo: сверхмассивные и асимметричные слияния черных дыр. Свет от темной материи в эксперименте Xenon. Чего не хватает для создания квантового интернета? Коперниканский переворот в нейронных сетях. Червякомешалка. Вселенский метроном и предел точности атомных часов. Благородные металлы и графен против токсичных газов. Мультиферроик с ферродолинным упорядочением. Борные сенсоры азотосодержащих загрязнителей.

Наносистемы: физика, химия, математика (2020, Т. 11, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-6
Там же можно скачать номер журнала целиком.

С Новым годом!
Дорогие друзья и коллеги!
Поздравляем с наступающим 2021 годом!
Желаем всем хорошего настроения и здоровья, удачи во всем и новых достижений!

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.