Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. (A) Схема процесса получения CMOS микросхем с максимальной гибкостью (третья картинка сверху) и полностью обратимой деформацией сжатия/растяжения (нижняя картинка) и схематическое изображение нейтральной механической плоскости в полученном устройстве (справа внизу); оптические изображения полученных микросхем: (B) CMOS обратный преобразователь, (C) эластичная пластинка на тонкой палочке после удаления твёрдой подложки, (D) волнистая форма поверхности при использовании полидиметилсилокана (ПДМС).
Рис.2. (A) Волнистая форма Si-CMOS инвертора на ПДМС при различных значениях предварительной деформации подложки (слева направо: 2.7, 3.9, 5.7%, соответственно). (B) Полная 3D картина, рассчитанная с помощью FEM, для системы с предварительным растяжением 3.9% (слева) и SEM-изображение образца, полученного при аналогичных условиях (справа). (С) Изображения волнистой формы Si-CMOS инвертора при эластичной деформации вдоль осей x и y. (D) Измеренная (красная и чёрная линии) и рассчитанная (синяя) характеристики переноса волнистых инверторов (слева), на вставке n- и p-каналы MOSFET (чёрная и пунктирная линии, соответственно). Справа измеренное (закрашенные квадратики) и рассчитанное (пустые квадратики) пороговое напряжение инвертора в зависимости от приложенной деформации.
Рис.3. (A) Оптическое изображение массива растягиваемых волнообразных трёхступенчатых CMOS кольцевых осцилляторов (вверху слева) и изображения обычных осцилляторов при различных приложенных деформациях, направление которых указывают красные стрелки. Измеренные времена и частоты отклика осциллятора при различных приложенных деформациях. (B) Схема дифференциального усилителя (вверху слева); выходные характеристики для различных значений приложенных деформаций (внизу слева); изображения волнистой формы дифференциального усилителя в исходном состоянии (вверху) и после растяжения (внизу).
Рис.4. (A) Изображение гибкой тонкой Si-CMOS микросхемы, полученной при нанесении дополнительного слоя полимера, сложенной пополам на грани покровного стекла микроскопа. Вставка – схематическое поперечное представление полученного устройства. (B) Изображения скрученной (вверху) и согнутой (внизу) волнистой формы Si-CMOS схемы, полученной с двойной нейтральной плоскостью. Слева представлен инвертор в центре, а справа – на краю одного и того же образца при кручении.

Гибкие интегральные микросхемы

Ключевые слова:  Si-CMOS устройства, волнистая структруа, гибкая микросхема, микропечатная электроника, нанотехнология, полимеры

Опубликовал(а):  Смирнов Евгений Алексеевич

28 мая 2008

Развитие современной наноэлектроники и всё возрастающие потребности человечества требуют создания миниатюрных, лёгких и гибких устройств, которые по своим характеристика не уступают «объёмным» собратьям. Миниатюрные гибкие компьютеры необходимы, например, для осуществления постоянного контроля за состоянием организма человека и «местной» терапии, для создания «умных» хирургических перчаток, ноутбуков, которые можно будет носить в маленьком тубусе и т.д. Самое простое решение данной проблемы заключается в печатании интегральных микросхем на полимерной основе, которая и будет определять эластические свойства "наноустройства".

Недавно был предложен новый метод производства гибких интегральных микросхем и исследовано поведение различных характеристик при растяжении или сжатии таких устройств. Суть подхода заключается в том, что на исходную растянутую пластинку полимера печатаются необходимые элементы микросхем, а затем происходит релаксация напряжений, и основа вместе со всей микросхемой принимает "волнообразную" форму. Учёные также использовали и метод без применения растяжения (рис.1), однако при этом получаются микросхемы, обладающие недостаточной эластичностью, а для некоторых применений – и слишком низкой жёсткостью на изгиб.

Проведённые исследования и компьютерное моделирование данных структур (рис. 2-3) позволяют заключить, что применение данного метода для создания гибких интегральных микросхем достаточно эффективно, так как основные физические характеристики не изменяются при деформации схемы. Растяжение и сжатие практически не влияли на работу небольшой микросхемы, созданной по данной технологии (рис.3).

Также было показано, что создание сэндвичевой структуры позволяет деформировать интегральную микросхему ещё больше (рис.4) без явного изменения электрических свойств цепи.

Таким образом, сделан ещё один шаг на пути построения гибкой и миниатюрной (печатной!) электроники, которую в скором будущем каждый из нас сможет приобрести и которая позволит расширить горизонты применения вычислительной и управляющей техники.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нано-незнакомка
Нано-незнакомка

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Пластырь по мотивам колючек кактуса быстро и эффективно собирает капли пота для анализа. Как нож сквозь масло, или секреты резки полимеров. Алмазное стекло из фуллеренов. Есть только миг: метаморфозы антиферромагнитного кристалла в терагерцовом импульсе. Лазерная нарезка струи или оптофлюидный резонанс.

С Новым годом!
Мы надеемся, что Новый год принесет всем удачи, новые достижения, откроет перспективы и сделает мир лучше. Поздравляем всех с Новым годом!

Наносистемы: физика, химия, математика (2021, Т. 12, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume12/12-6
Там же можно скачать номер журнала целиком.

Электронные материалы Заочной Научно - Технологической Школы - 2021
А.А.Семенова, Е.А.Гудилин, коллектив авторов
С 15 ноября по 15 декабря 2021 в рамках XVI Всероссийской Олимпиады "Нанотехнологии - прорыв в будущее!" проведено подготовительное мероприятие для потенциальных участников Олимпиады - Заочная Научно-Технологическая Школа (ЗНТШ'2021). В этой статье собраны основные факты и сборник электронных материалов ЗНТШ.

Десять лет перовскитной солнечной энергетики
Е.А.Гудилин , Mend Comm, А.Б.Тарасов, Н.Н.Удалова, А.А.Петров, другие авторы
Журнал Mendeleev Communications опубликовал виртуальный специальный выпуск «Ten years of hybrid perovskite photovoltaics and optoelectronics in the mirror of MAPPIC 2020 meeting»

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2021
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 8, 9, 10 и 11 июня 2021 г. Начало защит в 11.00. Защиты пройдут с использованием дистанционных образовательных технологий.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.