Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. а) AFM изображение монослоя графена на подложке Si/SiO2 б) Рамановский спектр графена
Рис. 2. Схематическое, оптическое и СЭМ изображение подготовленного для эксперимента листа графена
Рис. 3. Схема проведения эксперимента

Графен замечательно проводит тепло

Ключевые слова:  графен, периодика, теплопроводность

Опубликовал(а):  Уточникова Валентина Владимировна

28 февраля 2008

Графен - недавно открытая форма углерода (которой активно занимаются и в РФ), состоящая из одного графитового монослоя, - уже завоевала внимание ученых благодаря ряду потрясающих свойств. Необычный закон дисперсии электронов заставляет их вести себя подобно "безмассовым" релятивистским фермионам, делая возможным проявление различных неорбычных эффектов, таких как квантовый эффект Холла и пр. Чрезвычайно высокая подвижность носителей заряда при комнатной температуре, возможность квантовой проводимости и эпитаксиального наслаивания делают графен многообещающим материалом для "нано"электронных схем. Однако теоретические предсказания чрезвычайно высокой теплопроводности до сих пор не находили практического подтверждения.

Впервые такие исследования с помощью конфокальной микро-рамановской спектроскопии провела группа калифорнийских ученых и обнаружила, что значения теплопроводности при комнатной температуре достигают величин вплоть до 5300 Вт/мК. Такие значения помогут графену обойти по теплопроводности углеродные нанотрубки, в том числе и в области электронных применений, например, при создании CMOS-транзисторов. Также это может увеличить число применений графена как "термоуправляющего" материала в оптоэлектронике, фотонике и т.д.

Проблема поиска материалов с большой теплопроводностью для транзисторов исходит из факта значительного увеличения энергетических потерь при уменьшении размеров таких устройств. Именно поэтому нанотрубки (теплопроводность 3000 Вт/мК для многослойной и 3500 Вт/мК для однослойной) выглядят оптимистично по сравнению с лучшими объемными материалами, например, алмазом (1000-2200 Вт/мК).

Несмотря на необходимость поиска материалов с высокой теплопроводностью, до сих пор не было подобных работ, посвященных графену, что в целом объяснялось отсутствием разработанных экспериментальных подходов по анализу его теплопроводности. Возможность провести такие измерения дал бесконтактный метод конфокальной микро-рамановской спектроскопии. Это стало возможным благодаря следующим факторам:

  • рамановский спектр графена хорошо изучен;
  • так называемый рамановский G - пик графена сильно зависит от температуры.

Рамановская спектроскопия уже успешно применялась ранее для измерения теплопроводности плохо проводящих тепло материалов и их пленок, однако графен имеет свою специфику. В частности, метод плохо работает для объемных материалов с высокой теплопроводностью, поскольку сообщенное лазером тепло быстро рассеивается в трех пространственных направлениях. Однако малая толщина графена - всего один монослой - позволяет избежать такого поведения.

Графен был получен по стандартной методике отслаиванием графита (Рис. 1а). На Рис. 1б показан рамановский спектр графена - стоксов пик при 1583 см-1 и симметричный пик при 2700 см-1, что соответствует графену. Затем на подложке Si/SiO2 были протравлены канавки, поперек которых поместили графеновые листы (Рис. 2). Глубина канавок была 300 нм, а ширина менялась от 2 до 5мкм.

На Рис. 3 приведена схема эксперимента. На середину графенового листа направляли лазер, луч которого имел диаметр 0.5-1 мкм. В качестве теплоотводов использовали расположенные на периферии объемные куски графита. Был выбран лазер с длиной волны 488 нм, так как меньшие длины волн не позволяют получать хорошие рамановские спектры, а большие не производят эффективный локальный разогрев графена.

Теплопроводность может быть рассчитана по следующей формуле:

K=xG(L/2hW)(dw/dP)-1,

где xG - константа в термической зависимости положения пика G (w=w0+xG*T), L - расстояние от центра графенового слоя до термостока, h -толщина графена, W -ширина канала, dw - малое изменение позиции пика G при малом изменении dP мощности нагрева.

Предварительно был определен коэффициент xG, который составил xG=-1.6*10-2 см-1К-1. По полученной затем зависимости положения пика G от мощности, которая оказалась линейной, была вычислена и производная dw/dP=-1.29 см-1мВт-1. В результате теплопроводность образцов и составила (4.84-5.30)*103 Вт/мК.

Таким образом, графен имеет все больше шансов стать перспективным материалом в микроэлектронных приложениях.


Источник: Nano Letters



Комментарии
Красс Марта Ивановна, 28 февраля 2008 12:21 
Правильно ли я понимаю, что теплопроводность графена в данном эксперименте определялась по величине температуры (а точнее - по температурно-зависимому смещению рамановской полосы), установившейся центре светового пятна в динамическом равновесии с теплоотводом?
Мне кажется, что такой подход требует дополнительной верификации. Можно ссылку на полный текст?
Mayorov Alexander Sergeevich, 09 июля 2008 18:17 
Предлагаю заменить ссылку на неправильную статью на элементах на эту http://ru.wi...D0%B5%D0%BD

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанояблоки (научная имитация)
Нанояблоки (научная имитация)

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.