Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1 Спин, S, одиночного магнитного иона имеет предпочтительную ориентацию в пространстве. Это является определяющим условием для создания одноатомного устройства записи. В работе [1] был использован сканирующий туннельный микроскоп (СТМ) чтобы измерить электронное возбуждение около атома железа (отмечен голубым цветом), адсорбированного на поверхности нитрида меди. Эти возбуждения обнаруживают магнитное состояние спина атома железа и изменение спина с изменением направления приложенного внешнего магнитного поля. Расчеты электронной плотности на поверхности легли в основу объяснения полученых результатов СТМ

Явления магнетизма на наноразмерном уровне

Ключевые слова:  MRAM, магнетизм, магнитная анизотропия, магнторезистивная память, периодика, СТМ, суперпарамагнетизм, эффект гигантского магнетосопротивления

Опубликовал(а):  Гольдт Илья

10 января 2008

Увеличение плотности записи информации за последнее десятилетие сделало гигантский скачок вперед за счет новых магнитных материалов. Стоит отметить, что полученные величины существенно превосходят соответствующие плотности записи, достигаемые при использовании широко известных полупроводниковых материалов.

При разработке магнитных устройств записи решающими стали два фактора – магнитный момент и магнитная анизотропия. Под магнитным моментом понимается сумма всех магнитных моментов системы; магнитная энергия анизотропии – это выигрыш в энергии за счет ориентации спинов в определенном направлении. Для малых структур область, в которой спины строго ориентированы в одном и том же направлении, может характеризоваться макроскопическим суммарным спином, или «макроспином». Если энергия анизотропии достаточно велика, то за счет устойчивости направления "макроспина" можно добиться долговременной памяти. С другой стороны, если энергия анизотропии недостаточно велика по сравнению с тепловой энергией, то направление макроскопического спина может меняться спонтанным образом.

Andreas Heinrich и его коллеги (IBM’s Almaden Research Centre in San Jose) опубликовали в журнале “Science” статью о том, что им удалось провести измерения магнитного момента и магнитной энергии анизотропии на атомном уровне [1]. Были получены величины энергии анизотропии и спина индивидуальных атомов железа и марганца, адсорбированных на поверхности нитрида меди. Используя низкотемпературные измерения с использованмием туннельной силовой микроскопии, можно наблюдать электронное возбуждение атомов железа или марганца, которое связано с изменением магнитного состояния ионов. (рис.1)

Анализируя, как энергия этих возбуждений зависит от направления и величины приложенного поля, можно предсказать вероятность предпочтительной ориентации спина.

Таким образом, становится возможным установить, как магнитные свойства атомов зависят от их ближайшего окружения. Измерение магнитных моментов и энергии анизотропии хорошо известных, модельных систем даст возможность сравнивать экспериментальные данные с теоретическими расчетами.

Магнитная анизотропия материала (в том числе и наноразмерного) связана с переориентацией спинов из предпочтительного направления (оси легкого намагничивания) по другим осям. В работе [2] был предложен способ контроля времени жизни этих магнитных состояний путем приложения спин-поляризованного тока. Таким образом, получается своего рода «переключение» вектора намагниченности.

В большинстве магнитных устройств запись информации осуществляется за счет приложения магнитного поля; считывание информации происходит на основе эффекта гигантского магнетосопротивления (ГМС). Для заметки: в этом году ученым Альберту Феру и Питеру Грюнбергу была присуждена Нобелевская премия в области физики за открытие эффекта ГМС .

Ячейка устройства магнеторезистивной памяти (magnetic random access memory-MRAM) состоит из двух магнитных электродов, разделенных немагнитной прослойкой. Перемагничивание электродов осуществляется с помощью магнитного поля. Однако, если бы стало возможным менять намагниченность, это позволило бы не только считывать информацию, но и записывать ее.

Работа такой системы перемагничивания некоторой наноразмерной области заключается в пропускании спин-поляризованного тока через ячейку MRAM. Теоретическое объяснение такого процесса перемагничивания стало центральной проблемой для развития нового поколения устройств магнитной записи. Большинство экспериментальных работ по этой тематике проводятся на нанонитях, однако размерный фактор не позволяет экспериментально контролировать проходящие в нанонитях процессы. Совсем недавно это проблема была решена группой ученых из Гамбурга [2], и стало возможным выявлять факторы, которые оказывают влияние на процесс перемагничивания.

Andreas Heinrich и его коллеги определили, что энергия анизотропии атома железа вдоль оси легкого намагничивания составляет 1.55±0.01 мэВ, а в перпендикулярном направлении — 0.31±0.01мэВ. Однако если в плоскости перпендикулярной к оси легкого намагничивания анизотропия была бы нулевой, атомы располагались бы вдоль одной оси с анизотропией, по величине одинаковой с величиной анизотропии атомов кобальта на поверхности платины. Остается выяснить, может ли быть создано атомное окружение, способствующее большой одноосевой анизотропии, которая так необходима для высокоплотной магнитной записи. Если это окажется возможно, то следующим шагом будет совмещение достижений групп из IBM и Гамбурга и применение спин-поляризованного СТМ для исследования одиночных атомов, обладающих магнитным моментом.

  1. Hirjibehedin, C. F. et al. // Science 317, 1199–1203 (2007).
  2. Krause, S., Berbil-Bautista, L., Herzog, G., Bode, M. & Wiesendanger, R. Science 317, 1537–1540 (2007).

Материал подготовлен Веряевой Е.С.




Комментарии
А пониженные температуры - это He или доли К?

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Частицы полученные пиролизом аэрозолей
Частицы полученные пиролизом аэрозолей

Конкурс логотипа ФНМ МГУ
Факультет наук о материалах МГУ имени М.В.Ломоносова объявляет творческий конкурс логотипа (эмблемы) ФНМ, работы принимаются с 21 августа до 15 сентября 2019 года. Участники - все, кто имеет или когда бы то ни было имел отношение к ФНМ МГУ: студенты, аспиранты, преподаватели, сотрудники, выпускники, а также все творческие люди из большой университетской семьи.

Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»
Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.