Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Схематическое изображение прибора для получения одностенных углеродных нанотрубок с использование первого подхода.
Рис.2. Масс-спектр системы, полученный при (a)450-560˚С и (b)830˚С нагревательного элемента, с применением первого подхода. (c) химические структуры радикалов, определённых при 830˚С.(d) Предложенная учёными модель образования циклических радикалов.
Рис.3. (a)-(d) SEM-изображения, полученных нанотрубок на подложке при 490-590˚С с использованием первого подхода.
Рис.4. (a) Рамановский спектр нанотрубок (излучение с длиной волны 514.4 нм), полученных при температуре 490-560˚С с использованием первого подхода. (b) TEM-изображение этих нанотрубок.
Рис.5. Зависимость содержания от времени радикалов(C5H9, C6H9 и C6H13), H2 и исходного этилена. Область II – область термического разложения этилена (его концентрация уменьшается) и образования радикалов и H2 (возрастание концентраций, достигающее насыщения после 2-х минут выдержки при 830˚С). SEM-изображения показвают изменение плотности нанотрубок на поверхности со временем.
Рис.6. (a)Анализатор масс-спектрометра помещён между газовой форсункой и нагревателем (830˚С); (b)Относительные содержания радикалов и этилена в зависимости от расстояния до нагревателя (стрелка указывает направление распространения радикалов).
Рис.7. Схематическое изображение прибора для получения одностенных углеродных нанотрубок с использование второго подхода.
Рис.8. Рамановский спектр нанотрубок(излучение с длиной волны 514.4 нм), полученных с использованием второго подхода.
Рис.9.(a)-(d)SEM-изображения нанотрубок, полученных на поверхности подложки при температурах 450-560˚С с использованием второго подхода.
Рис.10. TEM-изображение полученных нанотрубок.
Рис.11. Срез вдоль оси z подложки при температуре 400˚С. Кластеры AlxOy-Fe образовались после роста с использованием второго подхода.
Рис.12. Схематическое описание модели роста нанотрубок, основанное на циклических радикалах C5/C6((a)-(d)). (e) TEM-изображение демонстрирует рост нанотрубок, не только с участием металлического катализатора (Fe).

Низкотемпературный рост одностенных углеродных нанотрубок

Ключевые слова:  CVD, материаловедение, нанотрубки, периодика, технология

Опубликовал(а):  Смирнов Евгений Алексеевич

23 ноября 2007

Авторы статьи применили подложку из оксида кремния с трёхслойным катализатором (Mo-0.3 нм, Fe-1нм, Al-10 нм) и этилен для получения углеродных нанотрубок. Оба подхода, использованные в работе, основаны на образовании из этилена более сложных структур (таких как, С6Н9, С5H9 и C6H13) при нагреве газа и химическом осаждении из газовой фазы на подложку. Присутствие сложных "радикалов" регистрировалось с помощью масс-спектрометра.

Отличительная особенность первого подхода – подача газа через форсунку (рис.1) без нагрева. В этом методе температура подложки варьировалась от 490 до 560˚С за счёт кварцевой "прослойки" между нагревательным элементом и подложкой.

Контрольный эксперимент, в котором температура нагревательного элемента была в пределах от 490 до 560˚С, показал, что заметного роста нанотрубок не наблюдается, что, как полагают авторы, связано с отсутствием сложных "радикалов" (рис.2а). Однако при температуре нагревательного элемента 830˚С происходит образование из этилена "радикалов" и рост нанотрубок (рис.2b, 3). Наличие расщепления G-пика и RMB в рамановском спектре указывает на присутствие одностенных углеродных нанотрубок. TEM и SEM-изображения также указывают на образование нанотрубок (рис.3,4). На рисунке 5 представлен график зависимости количества "радикалов" и этилена от времени. Из TEM-изображений, приведённых ниже, видно, что плотность нанотрубок возрастает с увеличением времени синтеза. Однако следует отметить, что после некоторого периода времени плотность нанотрубок на поверхности подложки перестаёт увеличиваться. На рисунке 6 представлена зависимость соотношения радикалы - этилен от расстояния до подложки.

В другом подходе использовалась подогреваемая до 830˚С форсунка (рис.7), при этом температура подложки варьировалась от 450 до 580˚С. Рамановский спектр, SEM и TEM-изображения представлены на рисунках 8,9,10, соответственно. Вероятно, этот подход намного более привлекателен для практического применения, хотя температуру подложки нельзя понизить до ещё меньших значений, так как это будет препятствовать образованию каталитически активных кластеров металлов (рис.11).

Исходя из полученных экспериментальных данных, авторы предложили механизм роста данных нанотрубок(рис.12).


Источник: Nanotechnology



Комментарии
Зайцев Дмитрий Дмитриевич, 08 февраля 2008 15:45 
Забавно, но легшая в основу новости статья только что была отозвана авторами после дискуссии с издательством http://www.i.../49/495606/.
Трусов Л. А., 08 февраля 2008 18:21 
писали бы хоть, что за причина. а то как выкладывать до публикации, так это они запросто. а что не так - потом не говорят.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Драгоценные опалы из пробирки
Драгоценные опалы из пробирки

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.