Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Нанопроволоки WO3 при разном увеличении. Длина метки (a) 500 нм, (b) 200 нм, (c) 50 нм, (d, e) 20 нм.

Синтез нанопроволок WO3 в сверхкритической плазме

Ключевые слова:  наноматериал, нанопроволока, наноструктура, периодика, плазма, сверхкритический флюид

Опубликовал(а):  Трусов Л. А.

14 ноября 2007

Сверхкритические флюиды обладают рядом интересных особенностей. Они отличные растворители, имеют низкую вязкость, высокую теплоемкость, высокие скорости переноса и высокие осмотические давления. Кроме того, их физические свойства могут быть легко изменены при помощи варьирования температуры и давления. Наиболее часто в качестве сверхкритического флюида применяется CO2, который нетоксичен, безопасен и сравнительно легко переходит в сверхкритическое состояние.

Японские исследователи объединили методы синтеза в плазме и сверхкритических растворах в один и смогли получить одномерные нанопровода оксида вольфрама, покрытые аморфным углеродом.

В ячейку, где происходит образование сверхкритического раствора, были помещены вольфрамовые электроды, к которым было приложено высокочастотное переменное напряжение. При атмосферном давлении из углекислого газа образовывалась плазма, после чего в ячейке создавалось большое давление и вводилось некоторое количество толуола. Авторы отмечают, что непосредственно в сверхкритическом состоянии плазму получить довольно проблематично.

В процессе реакции образовалась черная сажа, которая, как оказалось при ближайшем рассмотрении, состоит из множества нанопроволок длиной в несколько микрометров. Более того, было выделено 2 типа проволок – одни являются простыми проволоками диаметром 20-30 нм, а другие представляют собой коаксиальные структуры с внутренним диаметром 10-20 нм и внешним 20-30 нм. Последние составляют около 20% от общего числа проволок. В докритическом состоянии нанопроволоки не образуются, и только при достижении давления 20 МПа они становятся основным продуктом синтеза. В отсутствие органического растворителя (толуола) формирование проволок не происходит.

По данным EDS (Energy Dispersive X-ray Spectroscopy) и ПЭМ, сердцевина коаксиальных проволок состоит из оксида вольфрама, а оболочка образована аморфным углеродом. Из данных рентгеновской дифракции было определено, что сердцевина сформирована моноклинными кристаллами WO3, и такую же структуру имеют и простые проволоки.

Работа «A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires» была опубликована в журнале Nanotechnology.


Источник: IOP




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Микрочасы
Микрочасы

Светодиодные технологии и оптоэлектроника: магистратура на стыке образования и индустрии
Открыт набор на первую в России индустриальную программу «Светодиодные технологии и оптоэлектроника» Университета ИТМО

Международная онлайн-дискуссия «Квант будущего»
Фонд Росконгресс, Госкорпорация «Росатом», Российский квантовый центр и научно-популярное издание N+1 завершают серию международных онлайн-дискуссий «Квант будущего», где лидеры индустрии и ведущие мировые ученые обсуждают, как квантовые технологии уже изменили наш мир, и с какими вызовами помогут справиться в будущем.
Заключительная дискуссия «Квантовая революция: профессии будущего и трансформация образования» состоится 8 июля в 17:00 по московскому времени.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Супергибридный материал для хранения водорода. Двумерная соль. Существование виртуальных мультиферроиков подтверждено. Чёрные бабочки. Служение науке и немного поэзии.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.