Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Платиновые наноколонны на подложке из стекла, полученные при температурах от 250 до 400 и выросшие в ориентации <100>.
Рисунок 2. Зернышки шириной 200 нм, образованные при температурах осаждения выше 400 С.
Рисунок 3. Профиль наноколонн
Рисунок 4. Форма конца колонны представляла собой пирамиду
Рисунок 5. Непрерывность зарастания подложки наноколоннами
Рисунок 6. Платиновые поликристаллы (не обладающие морфологией колонн) на титанате стронция [100], полученные при температуре выше 400 С.

MOCVD как метод получения платиновых наноколонн

Ключевые слова:  MOCVD, Pt, Наноколонны, периодика

Опубликовал(а):  Андрей

03 ноября 2007

Платиновые наноструктуры являются важными компонентами для наноэлектроники будущего благодаря ряду важных качеств: высокой химической инертности, устойчивости к окислению и высокой теплопроводности. В силу этого много внимания уделяется изучению пленок из платины, используемых в качестве электрических контактов в полупроводниковых устройствах, а также в качестве защитных покрытий для различных специальных инструментов и каталитических агентов в химических процессах. Так как, в связи с тенденцией к уменьшению электронных устройств, наноструктурные материалы на основе платины будут востребованы уже в ближайшем будущем, возникает вопрос о создании подходящих экпериментальных методов для получения платиновых наноструктур с требуемыми свойствами.

Недавно был предложен способ получения платиновых "наноколонн" методом MOCVD (metal-organic chemical vapor deposition). При этом использовались различные подложки (стекло, Hastelloy C276 (никелевый сплав) и SrTiO3 [100]), а в качестве прекурсора был взят ацетилацетонат платины.

В первом эксперименте в качестве подложки использовали стекло, химическое осаждение из газовой фазы проводили при различных температурах (от 220 до 550°С). На рисунке 1 показаны платиновые наноколонны, полученные при температурах от 250 до 400, выросшие в ориентации <100>. В случае осаждения при температуре выше 400°С образования наноколонн не было обнаружено. Вместо них образовывались "зернышки" шириной 200 нм (рисунок 2). На рисунке 3 показан профиль наноструктур, где четко видны практически вертикальные наноколонны, диаметры и длины которых составляли 40-80 нм и 1.8-2 мкм соответственно в зависимости от времени осаждения. Средний размер увеличивается со временем осаждения до 100-150 нм в ширину и 8 мкм в длину (при трехчасовом напылении). На рисунке 4 показана пирамидальная форма конца колонны. При этом подложка «зарастала» непрерывно (рисунок 5) – это означает, что такой метод является подходящим для роста наноструктурных массивов на больших площадях.

С помощью проводящего атомно-силового микроскопа исходя из электрического отклика была доказала высокая электропроводность индивидуальной колонны. Исследования влияния условий осаждения и зависимости роста от выбора подложки также были тщательно изучены. Оказалось, что изменение температуры сублимации прекурсора приводит к изменению размеров наноколонн, но не влияет на текстуру и морфологию поверхности. Также было показано, что парциальное давление кислорода не меняет скорость осаждения – длина платиновых наноколонн не изменялась при варьировании P(O2) от 1 до 8.8 Торр. Однако оно играет решающую роль при росте в ориентации [100]. При использовании подложек Hastelloy C276 ориентация [100] сохранялась; при осаждении на подложки SrTiO3[100] в интервале температур 250-400°С полученные образцы имели такую же текстуру и морфологию поверхности, как и в случае подложек из стекла. Выше 400°С платиновые наноструктуры представляли собой поликристаллы и не обладали морфологией колонн (рисунок 6).

Таким образом, был разработан простой, низкотемпературный синтез (MOCVD) платиновых наноколонн, который может быть применен при создании упорядоченных одномерных наноструктур на больших площадях, что дает хорошие перспективы для их массового производства.


Источник: ACS Nano



Комментарии
Rustres, 19 ноября 2007 10:20 


Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Морфология монолитного слоисто-волокнистого оксигидроксида алюминия
Морфология монолитного слоисто-волокнистого оксигидроксида алюминия

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.