Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Платиновые наноколонны на подложке из стекла, полученные при температурах от 250 до 400 и выросшие в ориентации <100>.
Рисунок 2. Зернышки шириной 200 нм, образованные при температурах осаждения выше 400 С.
Рисунок 3. Профиль наноколонн
Рисунок 4. Форма конца колонны представляла собой пирамиду
Рисунок 5. Непрерывность зарастания подложки наноколоннами
Рисунок 6. Платиновые поликристаллы (не обладающие морфологией колонн) на титанате стронция [100], полученные при температуре выше 400 С.

MOCVD как метод получения платиновых наноколонн

Ключевые слова:  MOCVD, Pt, Наноколонны, периодика

Опубликовал(а):  Андрей

03 ноября 2007

Платиновые наноструктуры являются важными компонентами для наноэлектроники будущего благодаря ряду важных качеств: высокой химической инертности, устойчивости к окислению и высокой теплопроводности. В силу этого много внимания уделяется изучению пленок из платины, используемых в качестве электрических контактов в полупроводниковых устройствах, а также в качестве защитных покрытий для различных специальных инструментов и каталитических агентов в химических процессах. Так как, в связи с тенденцией к уменьшению электронных устройств, наноструктурные материалы на основе платины будут востребованы уже в ближайшем будущем, возникает вопрос о создании подходящих экпериментальных методов для получения платиновых наноструктур с требуемыми свойствами.

Недавно был предложен способ получения платиновых "наноколонн" методом MOCVD (metal-organic chemical vapor deposition). При этом использовались различные подложки (стекло, Hastelloy C276 (никелевый сплав) и SrTiO3 [100]), а в качестве прекурсора был взят ацетилацетонат платины.

В первом эксперименте в качестве подложки использовали стекло, химическое осаждение из газовой фазы проводили при различных температурах (от 220 до 550°С). На рисунке 1 показаны платиновые наноколонны, полученные при температурах от 250 до 400, выросшие в ориентации <100>. В случае осаждения при температуре выше 400°С образования наноколонн не было обнаружено. Вместо них образовывались "зернышки" шириной 200 нм (рисунок 2). На рисунке 3 показан профиль наноструктур, где четко видны практически вертикальные наноколонны, диаметры и длины которых составляли 40-80 нм и 1.8-2 мкм соответственно в зависимости от времени осаждения. Средний размер увеличивается со временем осаждения до 100-150 нм в ширину и 8 мкм в длину (при трехчасовом напылении). На рисунке 4 показана пирамидальная форма конца колонны. При этом подложка «зарастала» непрерывно (рисунок 5) – это означает, что такой метод является подходящим для роста наноструктурных массивов на больших площадях.

С помощью проводящего атомно-силового микроскопа исходя из электрического отклика была доказала высокая электропроводность индивидуальной колонны. Исследования влияния условий осаждения и зависимости роста от выбора подложки также были тщательно изучены. Оказалось, что изменение температуры сублимации прекурсора приводит к изменению размеров наноколонн, но не влияет на текстуру и морфологию поверхности. Также было показано, что парциальное давление кислорода не меняет скорость осаждения – длина платиновых наноколонн не изменялась при варьировании P(O2) от 1 до 8.8 Торр. Однако оно играет решающую роль при росте в ориентации [100]. При использовании подложек Hastelloy C276 ориентация [100] сохранялась; при осаждении на подложки SrTiO3[100] в интервале температур 250-400°С полученные образцы имели такую же текстуру и морфологию поверхности, как и в случае подложек из стекла. Выше 400°С платиновые наноструктуры представляли собой поликристаллы и не обладали морфологией колонн (рисунок 6).

Таким образом, был разработан простой, низкотемпературный синтез (MOCVD) платиновых наноколонн, который может быть применен при создании упорядоченных одномерных наноструктур на больших площадях, что дает хорошие перспективы для их массового производства.


Источник: ACS Nano



Комментарии
Rustres, 19 ноября 2007 10:20 


Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Вольфрамовый зонд (продолжение)
Вольфрамовый зонд (продолжение)

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.