Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рост бездвойниковых и двойникованных наночастиц серебра из различных прекурсоров.

Перст: дефекты в наночастицах

Ключевые слова:  двойники, дефекты, наночастицы металлов, периодика, серебро

Опубликовал(а):  Гудилин Евгений Алексеевич

16 октября 2007

Физические свойства металлических наночастиц (НЧ) часто очень сильно отличаются от свойств объемных образцов того же самого материала (например, уменьшение размеров частицы приводит к уменьшению ее температуры плавления). Технологи научились изготавливать НЧ различных размеров, формы и химического состава. А вот контролировать число и тип дефектов в НЧ они пока не умеют. Поэтому в вопросе о влиянии дефектов на характеристики НЧ до сих пор остается много белых пятен. Между тем известно, что наличие дефектов может приводить к весьма существенному изменению свойств НЧ. К примеру, дефектные НЧ золота термодинамически более устойчивы.

В работе [1] сотрудники University of Maryland (США) разработали технологию, которая позволяет контролируемым образом изготавливать НЧ серебра, имеющие одинаковый размер, но при этом являющиеся либо монокристаллическими, либо содержащими большое количество двойников – областей с различной ориентацией кристаллографических осей. Границы раздела между такими областями являются дефектами особого рода (так называемыми дефектами двойникования). Эта технология основана на использовании для синтеза НЧ различных полимерных прекурсоров, а именно – трифенилфосфина серебра (PPh3)3Ag-R с разными функциональными группами R = Cl, и R = NO3. Если при R = NO3 из зародышей вырастают двойникованные НЧ, то при R = Cl – бездвойниковые (см. рис.).

Связано это со специфической особенностью ионов Cl блокировать образование двойников. Средний размер и тех и других НЧ составил (10.5 ± 0.4)нм.

Исследования показали, что физико-химические свойства этих двух типов НЧ существенно различаются. Например, при взаимодействии с селеном из бездвойниковых НЧ получались полые НЧ Ag2Se, а из двойникованных – сплошные однородные НЧ. Это объясняется тем, что различие коэффициентов диффузии атомов Ag и Se по кристаллической решетке способствует формированию вакансий (скопление которых в итоге и образует полость внутри НЧ), тогда как атомы Se, перемещающиеся не по решетке, а по границам двойников, легко проникают в разделенные этими границами области Ag, в результате чего образуется однородная НЧ Ag2Se. Далее, в двойникованных НЧ имеет место гораздо более быстрое охлаждение электронной подсистемы после воздействия лазерного импульса (вследствие передачи энергии решетке). Это говорит о том, что границы двойников усиливают электрон-фононное взаимодействие, которое, следовательно, можно регулировать путем изменения концентрации дефектов в НЧ. Любопытно, что модуль упругости бездвойниковых НЧ (определенный по периоду их радиальных колебаний после облучения лазером) оказался на треть меньше, чем у двойникованных НЧ (это, впрочем, согласуется с имеющимися в литературе данными атомной силовой микроскопии об увеличении прочности серебряных нанопроводов после двойникования). Напротив, исследования оптических характеристик показало, что резонансный отклик локализованных поверхностных плазмонов (LSPR) в кристаллических НЧ гораздо сильнее. А поскольку LSPR очень чувствителен к внешнему окружению, то именно бездвойниковые НЧ лучше подходят для использования в датчиках газов. Таким образом, оптимальная степень дефектности НЧ определяется тем, где именно эти НЧ мы хотим использовать и какие конкретно устройства собираемся из них изготовить. Где-то нанокристалличность хороша, а где-то и нет…

  1. Y.Tang, M.Ouyang, Nature Mater. 6, 754 (2007).


Источник: Перст




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Планетарный разлом
Планетарный разлом

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.