Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Структура графита.
Рис. 2. Метод Клара синтеза HBC.
Рис. 3. Другие методы синтеза HBC.
Рис. 4. Еще немножко молекул.
Рис. 5. Комплекс модифицированного HBC с фуллереном.
Рис. 6. Очень многоядерные структуры.
Рис. 7. Образование жидких кристаллов PAH.
Рис. 8. Упорядочение жидких кристаллов в пленке.
Рис. 9. Полевой эффект пленки на основе PAH.
Рис. 10. Формирование углеродных трубок: схема темплатного синтеза и SEM и TEM изображения полученнных структур.

Полиядерные ароматические соединения: от синтеза к использованию

Ключевые слова:  FET, графен, органический синтез, периодика, полиядерные ароматические соединения, солнечные ячейки, углеродные нанотрубки

Автор(ы): Уточникова Валентина

Опубликовал(а):  Уточникова Валентина Владимировна

15 октября 2007

Этот небольшой обзор посвящен свойствам полициклических ароматических углеводородов (polycyclic aromatic hydrocarbons, PAHs). Эти соединения уже известны как ключевые фрагменты в структурной органической химии, однако их способность структурироваться, а также интересные электронные свойства делают возможным их перспективное использование в электронике и оптоэлектронике, в первую очередь, в электролюминесцентных устройствах, полевых транзисторах, солнечных батареях.

Можно сказать, что sp2 - гибридизованное состояние углерода является одним из основных. Так, самая распространенная его природная форма – графит – представляет собой слои связанных в плоские шестиугольники sp2- гибридизованных атомов углерода. Одним из важных свойств таких слоев является "πи - πи" взаимодействие, приводящее к объединению слоев в объемный материал. Монослой графита – графен – обладает уникальными электрическими свойствами и является интересным объектом синтеза и многих современных исследований (см., напр., Прототип графеновой памяти, Графеновая бумага и др.). Можно сказать, что и ароматические соединения, начиная с самого бензола, являются маленькими фрагментами этой структуры. И в этих структурах не менее важно проявление π-π взаимодействия, приводящее к образованию стопок молекул – стеков.

PAHs являются фактически гораздо более крупными, по сравнению с бензолом, фрагментами графена. Их синтез представляет интерес как с точки зрения органической химии, так и с точки зрения материаловедения. Одним из типичных примеров таких соединений является гекса-пери-гексабензокоронен (hexa-peri-hexabenzocoronene, HBC). Его высокая симметрия (D6h) и широкая π-система позволяет назвать его «супербензолом». Введение в эту молекулу концевых заместителей позволяет контролировать его растворимость, термическую устойчивость, а также способность образовывать стеки, что важно в материаловедении для практического применения таких соединений.

Одним из первых синтез PAHs осуществил Эрих Клар с коллегами (см. Clar, E. Polycyclic Hydrocarbons; Academic Press: New York, 1964;). Ему удалось разработать сравнительно простые и недорогие методы синтеза PAHs. К ним относится и синтез гексабензокоронена по представленной на рисунке схеме. Следует отметить, что несмотря на низкий выход этого синтеза, метод Клара до сих пор используется на практике. Среди других методов можно выделить метод, предложенный Halleux с коллегами (Halleux, A.; Martin, R. H.; King, G. S. D. HelV. Chim. Acta 1958, 129, 1177), однако он уступает методу Клара в простоте, и методы, предложенные Jishan Wu с коллегами, которые отличаются более высокими выходами. Кроме того, второй метод позволяет получать несимметрично замещенный коронен. Однако следует отметить также и сложность предложенного подхода, а также токсичность используемых катализаторов. В совокупности эти методы позволяют с неплохим выходом получать различные замещенные структуры (см. рисунок). При этом почти все производные HBC проявляют склонность к образованию "пачек" за счет взаимодействия, вызванного их обширной πи-системой. Однако добавлением заместителей можно создать стерические затруднения, которые будут этому препятствовать. На рисунке показана структура молекулы, которая вследствие большого объема соседствующих заместителей становится настолько неплоской, что образует комплексы с фуллереном С60.

Химическое искусство заходит настолько далеко, что позволяет создавать совершенно гигантские ароматические массивы и даже ленты PAHs, однако из-за полной нерастворимости в каких бы то ни было растворителях, что вызвано сильнейшим межмолекулярным взаимодействием, по силе превосходящими взаимодействия со средой, эти соединения с трудом применимы на практике.

От PAHs, кроме их уникальных электронных и оптоэлектронных свойств, требуется также:
- растворимость (в воде или в органических растворителях)
- способность образовывать "пачки"
- способность "пачек" связываться друг с другом, образуя жидкие кристаллы.

Все это приведет к тому, что эти органические соединения можно будет рассматривать не просто как молекулы с интересными свойствами, а как перспективные материалы. Важно отметить, что все эти свойства можно регулировать не только варьируя органическое ядро, но и вводя различные заместители.

На рисунке представлена схема образования жидких кристаллов PAH в растворе и расплаве. Основными стадиями этого процесса являются:
- образование πи-πи "пачек" молекул
- связывание "пачек" между собой.

Стекообразование оказывается тем лучше, чем менее разветвленные заместители входят в состав молекулы, поскольку объемные заместители приводят к искажению плоской структуры. Однако одновременно с этим они способствуют лучшей растворимости соединений, в том числе в полярных растворителях, если заместитель содержит полярный фрагмент (например, кислотный или спиртовой). Таким образом, для достижения оптимума свойств необходимо аккуратно варьировать группы-заместители. Кроме того, образование водородных связей стабилизирует "пачки", связывая их между собой в протяженные структуры. Этому еще больше способствует введение различных по полярности заместителей с созданием амфифильного соединения, что одновременно повышает растворимость за счет заместителей одного типа и способность к связыванию – за счет другого.

Однако "просто растворенные" жидкие кристаллы не представляют практического интереса. Гораздо важнее – получение их упорядоченных пленок. Для этого можно использовать классические методы – Лэнгмюра-Блоджетт или зонной плавки. При этом образуется слой упорядоченных "пачек", расположенных горизонтально или вертикально (гомеотропно). При этом на чистой подложке более термодинамически выгодно образование гомеотропных фрагментов, однако зачастую "пачки" ложатся на ребро. Гомеотропные пленки гораздо лучше образуются при введении гетероатомов в ароматическое ядро. Для того же, чтобы лучше образовывались "пачки", уложенные на ребро, целесообразно наносить пленку на соответствующую ориентированную подложку. Полученные пленки в ряде случаев могут проявлять полевой эффект. Вольтамперная характеристика одного из таких устройств представлена на рисунке. Кроме того, на основе таких соединений можно получать нанотрубки нового типа. Для этого предлагается использовать темплатный синтез, матрицей для которого является пористый оксид алюминия. При этом в порах образуются "пачки" молекул, которые затем отжигаются при 400°С для образования мезофазы и затем (не выше 800°С) – для протекания графитизации. Эта температура намного ниже, чем обычно используемые температуры графитизации (2000-3000°С). После чего избавление от темплата приводит к массиву углеродных «трубо». Подобный метод позволяет хорошо контролировать чистоту продукта, который в дальнейшем может быть использован для создания материалов для новых источников энергии.

Таким образом, полиядерные ароматические соединения являются перспективными материалами для электролюминесцентных устройств, солнечных батареек и полевых транзисторов. Их способность к образованию стеков и связывание "пачек" друг с другом, как и растворимость, можно контролировать введением различных заместителей. Отжиг полученных на их основе пленок приводит к образованию нового упорядоченного углеродного соединения – «альтернативных нанотрубок».


В статье использованы материалы: BioInfoBank, любой учебник органической химии


Средний балл: 9.7 (голосов 7)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Колыбель новорожденного кристалла
Колыбель новорожденного кристалла

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.