Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Схема проведения эксперимента по непосредственному измерению пьезоэлектрических свойств титаната бария. На вкладке показано SEM изображение эксперимента.
Рис. 2. Типичный отклик титаната бария на приложение прямоугольной периодической нагрузки (сигнал с усилителя)
Рис. 3. Эквивалентная схема механической нагрузки и поведения нанопроволоки титаната бария.
Рис. 4. Сравнение измеренного сигнала усилителя при пиложении периодической нагрузки (черный график) и теоретической зависимости (красный) при приложении периодической нагрузки.

"Супернанопьезоэлектрогенератор"

Ключевые слова:  периодика, пьезоэлектрики

Опубликовал(а):  Уточникова Валентина Владимировна

08 октября 2007

В связи с миниатюризацией создаваемых устройств до микро- и даже наноразмеров появляется необходимость и в создании наноразмерных пьезоэлектриков. Недавно способность к генерации электричества была успешно продемонстрирована на нанопроволоках ZnO и GaN. Однако их пьезоэлектрические константы достаточно низки, что заставляет искать для этих целей другие материалы, например, титанат бария BaTiO3 и титанат-цирконат свинца (PTZ), у которых пьезоэлектрические константы высоки.

Для исследования пьезоэлектрических свойств нанонитей титаната бария к монокристаллическому образцу прикладывали растягивающее напряжение. При периодическом изменении механического напряжения, генерируемого с помощью прецизионной аппаратуры, наблюдалось периодическая генерация электрического напряжения. Измеренное электрическое напряжение оказалось пропорциональным прилагаемой нагрузке. Этот эффект был объяснен с помощью эквивалентной электрической схемы.

Для более детального изучения пьезоэлектрических свойств необходимо более контролируемо прилагать механическую нагрузку. Это и было исследовано группой ученых во главе с Zhaoyu Wang на примере титаната бария. Напряжение создавалось с помощью миниатюрного устройства нанометрового разрешения, а электрическое напряжение измерялось с помощью высокочувствительного датчика с быстрым откликом. Для измерений использовалась схема, изображенная на рис. 1, состоявшая из двух кремниевых баз, между которыми оставался зазор порядка 3 μм. Нанопроволока титаната бария помещалась словно мостик над этим зазором. При этом одна из баз покоилась, а другая приводилась в движение с помощью обычной пьезоэлектрической каретки. Измерения проводили в вакууме.

На рис. 2 показана типичная кривая отклика титаната бария при приложении периодического воздействия с помощью пьезоэлектрической каретки. Видно, что материал реагирует на внезапное изменение механической нагрузки. Как при увеличении, так и при уменьшении нагрузки после скачка напряжения виден спад. Аналогичная зависимость видна и при других амплитудах входного сигнала.

Эквивалентная схема, с помощью которой можно объяснить полученные данные, приведена на рис. 3. С ее помощью было показано, что зависимость выходного сигнала от времени выглядит как

Vout(t)=gCaVnw(t)exp(-t/ta),

где g - коэффициент усиления, ta - характерное время. Сопоставление этих данных с экспериментальными результатами (рис. 4) показывает хорошее совпадение.

Кроме демонстрации возможности прямого изучения пьезоэффекта для нанообъектов в работе показана возможность использования перовскитных пьезоэлектрических нанопроволок в энергосберегающих системах. Энергосберегающие системы – это устройства, направленные на аккумуляцию и хранение энергии. Часто они используют солнечную энергию, океанские приливы и отливы, а также пьезоэлектричество. Таким образом, способность пьезоэлектриков генерировать электрический ток при механической деформации является перспективной при создании таких устройств для использовании как в промышленности, так и в военных целях.

Уточникова Валентина


Источник: Nano Letters




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Monsters Inc.
Monsters Inc.

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.