Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Схема проведения эксперимента по непосредственному измерению пьезоэлектрических свойств титаната бария. На вкладке показано SEM изображение эксперимента.
Рис. 2. Типичный отклик титаната бария на приложение прямоугольной периодической нагрузки (сигнал с усилителя)
Рис. 3. Эквивалентная схема механической нагрузки и поведения нанопроволоки титаната бария.
Рис. 4. Сравнение измеренного сигнала усилителя при пиложении периодической нагрузки (черный график) и теоретической зависимости (красный) при приложении периодической нагрузки.

"Супернанопьезоэлектрогенератор"

Ключевые слова:  периодика, пьезоэлектрики

Опубликовал(а):  Уточникова Валентина Владимировна

08 октября 2007

В связи с миниатюризацией создаваемых устройств до микро- и даже наноразмеров появляется необходимость и в создании наноразмерных пьезоэлектриков. Недавно способность к генерации электричества была успешно продемонстрирована на нанопроволоках ZnO и GaN. Однако их пьезоэлектрические константы достаточно низки, что заставляет искать для этих целей другие материалы, например, титанат бария BaTiO3 и титанат-цирконат свинца (PTZ), у которых пьезоэлектрические константы высоки.

Для исследования пьезоэлектрических свойств нанонитей титаната бария к монокристаллическому образцу прикладывали растягивающее напряжение. При периодическом изменении механического напряжения, генерируемого с помощью прецизионной аппаратуры, наблюдалось периодическая генерация электрического напряжения. Измеренное электрическое напряжение оказалось пропорциональным прилагаемой нагрузке. Этот эффект был объяснен с помощью эквивалентной электрической схемы.

Для более детального изучения пьезоэлектрических свойств необходимо более контролируемо прилагать механическую нагрузку. Это и было исследовано группой ученых во главе с Zhaoyu Wang на примере титаната бария. Напряжение создавалось с помощью миниатюрного устройства нанометрового разрешения, а электрическое напряжение измерялось с помощью высокочувствительного датчика с быстрым откликом. Для измерений использовалась схема, изображенная на рис. 1, состоявшая из двух кремниевых баз, между которыми оставался зазор порядка 3 μм. Нанопроволока титаната бария помещалась словно мостик над этим зазором. При этом одна из баз покоилась, а другая приводилась в движение с помощью обычной пьезоэлектрической каретки. Измерения проводили в вакууме.

На рис. 2 показана типичная кривая отклика титаната бария при приложении периодического воздействия с помощью пьезоэлектрической каретки. Видно, что материал реагирует на внезапное изменение механической нагрузки. Как при увеличении, так и при уменьшении нагрузки после скачка напряжения виден спад. Аналогичная зависимость видна и при других амплитудах входного сигнала.

Эквивалентная схема, с помощью которой можно объяснить полученные данные, приведена на рис. 3. С ее помощью было показано, что зависимость выходного сигнала от времени выглядит как

Vout(t)=gCaVnw(t)exp(-t/ta),

где g - коэффициент усиления, ta - характерное время. Сопоставление этих данных с экспериментальными результатами (рис. 4) показывает хорошее совпадение.

Кроме демонстрации возможности прямого изучения пьезоэффекта для нанообъектов в работе показана возможность использования перовскитных пьезоэлектрических нанопроволок в энергосберегающих системах. Энергосберегающие системы – это устройства, направленные на аккумуляцию и хранение энергии. Часто они используют солнечную энергию, океанские приливы и отливы, а также пьезоэлектричество. Таким образом, способность пьезоэлектриков генерировать электрический ток при механической деформации является перспективной при создании таких устройств для использовании как в промышленности, так и в военных целях.

Уточникова Валентина


Источник: Nano Letters




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Клетки на нанотрубках
Клетки на нанотрубках

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Акустическая волна как смазка – звук гасит трение. Новый фуллерит из неклассического C32. Правила устойчивости для азота. Уроки природы. Глаз дрозофилы показал, как синтезировать многофункциональные нанопокрытия. Переключение долинной поляризации с помощью электрического поля.

Отборочный этап конкурса детских инженерных команд «Кванториада 2020»
С 20 ноября по 24 декабря проводится международный конкурс детских инженерных команд «Кванториада 2020».

Технологическое образование школьников для новой технологической эпохи
Самарский филиал Российской академии народного хозяйства и государственной службы (РАНХиГС) вместе с Фондом инфраструктурных и образовательных программ (ФИОП) провели 2–3 ноября 2020 году Международную научно-практическую конференцию «Технологическое образование школьников для новой технологической эпохи».

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Cверхпроводящая «пенка»
Гудилин Е.А.
Принцип «где тонко, там и рвется» с успехом используется в ограничителях предельно допустимого тока, сделанных из сверхпроводящих материалов. До сих пор пальму первенства в этом вопросе держали «ленточные» и «литые» устройства из висмут- содержащих ВТСП. Однако, существует и альтернатива - идея «сверхпроводящей пены», сделанной из YBa2Cu3Oz...

Керамика в эпоху нанотехнологии
Кушнир Сергей Евгеньевич
Химические нанотехнологии оперируют с хорошо известными химическими процессами, в которых участвуют хорошо известные органические или неорганические элементы и структуры. Но участвуют они лишь в "наноскопических" количествах. Если сравнить средние размеры наноэлемента с размерами обычного футбольного мяча, то их соотношение будет таким же, как у футбольного мяча с земным шаром! В результате, аккуратно выстраивая миниатюрные структуры из знакомых элементов таблицы Менделеева, сегодня можно получить материалы с удивительными свойствами.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.