Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. (a) Трехмерная оптическая решетка создается тремя парами лазерных пучков; угол между пучками в каждой паре q = 10о.

(b) Закрашенные кружки – атомы в узлах кубической кристаллической решетки; пустые кружки – узлы, не занятые атомами (вакансии).

(c) Потенциальный рельеф вдоль одной из осей оптической решетки. Атомы находятся вблизи минимумов потенциала. Высота энергетических барьеров изменяется вдоль решетки из-за сужения лазерного пучка и максимальна в центре решетки.
Рис.2. Скорость термоактивированных перескоков атомов между соседними узлами оптической решетки как функция высоты разделяющего их энергетического барьера (деленной на постоянную Больцмана) при T = 10 мкК.

ПЕРСТ: "Визуализация атомов в трехмерной оптической решетке"

Ключевые слова:  квантовый компьютер, кубиты, периодика

Опубликовал(а):  Гудилин Евгений Алексеевич

05 октября 2007

Внутренние состояния нейтральных атомов, находящихся в узлах оптической решетки при температуре ~ 10 мкК, предполагается использовать в качестве логических состояний квантовых битов (кубитов) для проведения квантовых вычислений. Межатомные взаимодействия, приводящие к перепутыванию состояний различных кубитов, могут изменяться в широких пределах [1], а взаимодействие атомов с внешним окружением настолько слабое, что время сохранения когерентности достигает ~ 1с. Ранее сообщалось о создании одномерных и двумерных оптических решеток, в каждом узле которых находится сразу несколько атомов [2,3], а также небольших (£ 7 атомов) систем с однократным заполнением узлов [4,5]. Чтобы в полной мере воспользоваться преимуществами квантового компьютера перед классическим, число кубитов нужно довести хотя бы до ~ 100 и расположить их как можно более компактно, чтобы облегчить межкубитные взаимодействия. Для этого очень пригодились бы трехмерные оптические решетки с контролируемым заполнением узлов атомами.

В работе [6] американские физики из Pennsylvania State University изготовили кубическую оптическую решетку, около половины узлов которой занята одиночными атомами цезия, охлажденными до T» 10 мкК, а другие узлы вакантны (рис.1). Период решетки 4.9 нм. Высота U0 энергетических барьеров, разделяющих соседние минимумы потенциала решетки, регулируется путем изменения мощности W лазерных пучков, формирующих решетку. В центре решетки она составляет U0/kB = 165 мкК при W = 60 мВт. Послойная (в каждой отдельно взятой кристаллической плоскости) визуализация атомов проводилась путем анализа рассеяния охлаждающего лазерного излучения с использованием CCD (charge-coupled device). Было установлено, что атомы, расположенные в центральной части решетки (всего около 250 атомов), не изменяют своих позиций за время наблюдения. Вместе с тем, атомы на периферии решетки (где величина U0 меньше (рис.1b)) перескакивают с узла на узел за счет термической активации (вероятность квантового подбарьерного туннелирования атомов при заданных параметрах потенциала решетки пренебрежимо мала). Зависимость скорости перескока G от U0 авторы [6] определяли путем понижения U0 в одном кристаллическом направлении (за счет уменьшения мощности соответствующей пары лазерных пучков) и непосредственного подсчета числа перескоков за 1 мин. Как и ожидалось, величина G экспоненциально уменьшается с ростом U0 (рис.2). Экстраполяция к U0/kB = 165 мкК дает G » 5×10-6 с-1, что соответствует макроскопическому (несколько суток) времени пребывания атомов в узлах решетки.

Существенно, что использованная в [6] методика визуализации является "неразрушающей": заполнение узлов атомами не меняется после "взгляда" на решетку. Достоверность определения того, занят данный узел или свободен, очень велика: вероятность ошибки составляет 3×10-4, и ее можно уменьшить до 10-7 путем получения повторного изображения. Оценка времени декогерентизации дает ~ 0.3 c. Это время можно увеличить до ~ 100 с, если охладить атомы до еще более низких температур (притом, что время одной квантовой операции ~ 10-5 с). Большие межатомные расстояния существенно облегчают индивидуальную адресацию кубитов и "чтение" результата квантового вычисления. Трехмерная геометрия способствует созданию сложных запутанных состояний нескольких кубитов, в том числе так называемых кластерных состояний. В дальнейшем авторы [6] планируют отладить процедуру заполнения всех вакантных узлов решетки, чтобы сделать систему атомов-кубитов еще более компактной.

  1. O.Mandel et al., Nature 425, 937 (2003).

  2. D.Boiron et al., Phys. Rev. A 57, R4106 (1998).

  3. R.Scheunemann et al., Phys. Rev. A 62, 051801 (2000).

  4. S.Bergamini et al., J. Opt. Soc. Am. B 21, 1889 (2004).

  5. Y.Miroshnichenko et al., Nature 442, 151 (2006).

  6. K.D.Nelson et al., Nature Phys. 3, 556 (2007).


Источник: Перст




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Кластеры атомов
Кластеры атомов

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

В Москве начинается MAPPIC - 2019
14-15 октября 2019 года состоится I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019)

РИА Новости: Нобелевскую премию по химии присудили за разработку литий-ионных батарей
РИА Новости: Джон Гуденаф, Стенли Уиттингхем и Акира Йошино стали лауреатами Нобелевской премии в области химии за 2019 год за разработку литий-ионных батарей.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.