Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. (a) Трехмерная оптическая решетка создается тремя парами лазерных пучков; угол между пучками в каждой паре q = 10о.

(b) Закрашенные кружки – атомы в узлах кубической кристаллической решетки; пустые кружки – узлы, не занятые атомами (вакансии).

(c) Потенциальный рельеф вдоль одной из осей оптической решетки. Атомы находятся вблизи минимумов потенциала. Высота энергетических барьеров изменяется вдоль решетки из-за сужения лазерного пучка и максимальна в центре решетки.
Рис.2. Скорость термоактивированных перескоков атомов между соседними узлами оптической решетки как функция высоты разделяющего их энергетического барьера (деленной на постоянную Больцмана) при T = 10 мкК.

ПЕРСТ: "Визуализация атомов в трехмерной оптической решетке"

Ключевые слова:  квантовый компьютер, кубиты, периодика

Опубликовал(а):  Гудилин Евгений Алексеевич

05 октября 2007

Внутренние состояния нейтральных атомов, находящихся в узлах оптической решетки при температуре ~ 10 мкК, предполагается использовать в качестве логических состояний квантовых битов (кубитов) для проведения квантовых вычислений. Межатомные взаимодействия, приводящие к перепутыванию состояний различных кубитов, могут изменяться в широких пределах [1], а взаимодействие атомов с внешним окружением настолько слабое, что время сохранения когерентности достигает ~ 1с. Ранее сообщалось о создании одномерных и двумерных оптических решеток, в каждом узле которых находится сразу несколько атомов [2,3], а также небольших (£ 7 атомов) систем с однократным заполнением узлов [4,5]. Чтобы в полной мере воспользоваться преимуществами квантового компьютера перед классическим, число кубитов нужно довести хотя бы до ~ 100 и расположить их как можно более компактно, чтобы облегчить межкубитные взаимодействия. Для этого очень пригодились бы трехмерные оптические решетки с контролируемым заполнением узлов атомами.

В работе [6] американские физики из Pennsylvania State University изготовили кубическую оптическую решетку, около половины узлов которой занята одиночными атомами цезия, охлажденными до T» 10 мкК, а другие узлы вакантны (рис.1). Период решетки 4.9 нм. Высота U0 энергетических барьеров, разделяющих соседние минимумы потенциала решетки, регулируется путем изменения мощности W лазерных пучков, формирующих решетку. В центре решетки она составляет U0/kB = 165 мкК при W = 60 мВт. Послойная (в каждой отдельно взятой кристаллической плоскости) визуализация атомов проводилась путем анализа рассеяния охлаждающего лазерного излучения с использованием CCD (charge-coupled device). Было установлено, что атомы, расположенные в центральной части решетки (всего около 250 атомов), не изменяют своих позиций за время наблюдения. Вместе с тем, атомы на периферии решетки (где величина U0 меньше (рис.1b)) перескакивают с узла на узел за счет термической активации (вероятность квантового подбарьерного туннелирования атомов при заданных параметрах потенциала решетки пренебрежимо мала). Зависимость скорости перескока G от U0 авторы [6] определяли путем понижения U0 в одном кристаллическом направлении (за счет уменьшения мощности соответствующей пары лазерных пучков) и непосредственного подсчета числа перескоков за 1 мин. Как и ожидалось, величина G экспоненциально уменьшается с ростом U0 (рис.2). Экстраполяция к U0/kB = 165 мкК дает G » 5×10-6 с-1, что соответствует макроскопическому (несколько суток) времени пребывания атомов в узлах решетки.

Существенно, что использованная в [6] методика визуализации является "неразрушающей": заполнение узлов атомами не меняется после "взгляда" на решетку. Достоверность определения того, занят данный узел или свободен, очень велика: вероятность ошибки составляет 3×10-4, и ее можно уменьшить до 10-7 путем получения повторного изображения. Оценка времени декогерентизации дает ~ 0.3 c. Это время можно увеличить до ~ 100 с, если охладить атомы до еще более низких температур (притом, что время одной квантовой операции ~ 10-5 с). Большие межатомные расстояния существенно облегчают индивидуальную адресацию кубитов и "чтение" результата квантового вычисления. Трехмерная геометрия способствует созданию сложных запутанных состояний нескольких кубитов, в том числе так называемых кластерных состояний. В дальнейшем авторы [6] планируют отладить процедуру заполнения всех вакантных узлов решетки, чтобы сделать систему атомов-кубитов еще более компактной.

  1. O.Mandel et al., Nature 425, 937 (2003).

  2. D.Boiron et al., Phys. Rev. A 57, R4106 (1998).

  3. R.Scheunemann et al., Phys. Rev. A 62, 051801 (2000).

  4. S.Bergamini et al., J. Opt. Soc. Am. B 21, 1889 (2004).

  5. Y.Miroshnichenko et al., Nature 442, 151 (2006).

  6. K.D.Nelson et al., Nature Phys. 3, 556 (2007).


Источник: Перст




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Цветы подводного мира
Цветы подводного мира

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.