Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Ветвистые структуры сульфида свинца.
Ветвистые структуры селенида свинца.
Вторичные нанопроволоки ответвляются под прямым углом.
Капли свинца на кончике кристалла PbSe и схема возможного механизма образования проволок.

Ветвистые полупроводниковые наноструктуры

Ключевые слова:  наноструктура, периодика, полупроводниковые материалы, экситон

Опубликовал(а):  Трусов Л. А.

26 сентября 2007

Недавно было обнаружено, что для нанокристаллов узкозонных полупроводников селенида и сульфида свинца характерно явление множественной экситонной генерации (Multiple Exciton Generation, MEG). При этом один высокоэнергетический фотон порождает до семи экситонов сразу. Это явление может быть использовано для создания высокопроизводительных фотовольтаических генераторов (например, солнечных батарей). Однако эффект лимитируется малым временем жизни носителей – при Оже-рекомбинации оно составляет всего несколько сотен пикосекунд. Это препятствует снятию заряда с наночастицы и снижает производительность устройств.

Одномерные нанопроволоки и различные структуры на их основе обладают некоторыми преимуществами перед отдельными нанокристаллами, так как в них носители могут двигаться вдоль аксиального направления и стекать на электроды.

Исследователи из University of Wisconsin-Madison (США) смогли синтезировать замечательные структуры, состоящие из ветвистых нанопроволок PbS и PbSe, методом CVD. В качестве прекурсоров выступали PbCl2 и S/Se, осаждение производилось на подложку Si(100). Нанопроволоки разветвляются под прямым углом в процессе эпитаксиального роста и могут порой образовывать очень плотные трехмерные сетки.

В процессе синтеза не использовался катализатор, однако рост структур протекал в токе водорода. Оказалось, что водород играет ключевую роль в процессах формирования ветвистых нанопроволок. Ученые полагают, что водород восстанавливает свинец в PbCl2, а тот в свою очередь обладает низкой температурой плавления и может катализировать рост нанопроволок. Поэтому в зависимости от интенсивности тока водорода и времени экспозиции образуются различные структуры из халькогенидов свинца. Как только в реакторе расходуется весь свинец, рост проволок прекращается.

Исследователям удалось подобрать оптимальные условия специально для получения нанопроволок. Боковые ветви могут образовываться как вследствие присутствия капель свинца, так и расти из дефектов, вызванных присутствием водорода. Также большое значение имеет поверхность кремниевой подложки.

Авторы работы отмечают, что водород может вызвать аналогичный рост нанопроволочных структур и в других системах с легкоплавкими металлами, способных выступить в роли катализатора.

Работа "Hyperbranched PbS and PbSe Nanowires and the Effect of Hydrogen Gas on Their Synthesis" была опубликована в журнале Nano Letters.


Источник: ACS Publications




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанокиви
Нанокиви

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.