Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Фотография отдельной пирамидальной структуры, полученная на сканирующем электронном микроскопе.
Сдвоенные пирамиды (СЭМ).

Нанопирамиды

Ключевые слова:  квантовые точки, периодика

Опубликовал(а):  Ярошинская Наталья Владимировна

03 сентября 2007

Немецкие ученые создали мельчайшие в мире пирамиды: их высота не превышает нескольких сотен нанометров. Они могут служить в качестве микрополостных оптических резонаторов за счет внутреннего отражения света от граней, которое позволяет достичь сильного заключения света во всех трех измерениях с малой потерей.

Оптические резонаторы представляют большой интерес для ученых, так как существует возможность их применения в квантовой обработке информации и создании фотонных генераторов. Давно известно, что взаимодействие электромагнитных волн и квантовых точек можно усилить, если заключить их в микрополости. Сильное взаимодействие необходимо для эффективной связи квантовых битов в квантовых точках и контролируемого взаимодействия пространственно разделенных квантовых точек. Традиционно используются цилиндрические микрополости, однако группа ученых из Центра Функциональных Наноструктур Университета в Карлсруе (University of Karlsruhe, Center for Functional Nanostructures) разработала технологию получения пирамидальных микрополостей, которые, по их словам, имеют лучшие показатели, чем циллиндрические.

Майкл Хеттерих (Dr. Michael Hetterich) с коллегами разработали методику получения полупроводниковых оптических резонаторов из арсенида галлия с помощью сочетания молекулярно-лучевой эпитаксии, электронно-лучевой литографии, структурирования и жидкостного травления. Были получены как отдельные, так и спаренные, соединенные вертикально либо последовательно, пирамидальные микрополости. Резонаторы образованы GaAs/AlAs Брэгговским зеркалом (структура, состоящая из чередующихся слоев двух разных оптически активных материалов) в основании пирамид и граней, служащих в качестве уголкового отражателя. Меняя состав жидкости для травления можно контролировать углы в основании пирамид. Квантовые точки из InGaAs внутри микрополостей использовались как широкополостные исотчники света для изучения структуры полостей с помощью микрофотолюминесценции.

Меньшая симметрия пирамидальных резонаторов по сравнению с цилиндрическими приводит к большему числу спектрально близких невырожденных резонансных волн, которые можно использовать для оптического спаривания состояний квантовых точек. При этом резонансные волны можно контролировать, меняя углы граней. Кроме того, помещая зеркала с более гладкой поверхностью на грани пирамид можно достичь высокого Q-фактора, требуемого для когерентного спаривания спиновых состояний квантовых точек с помощью световой волны. К настоящему моменту ученые смогли получить резонаторы с Q=600.




Источник: Nanowerk




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Удивительный диоксид олова
Удивительный диоксид олова

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.