Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Модель графенового листа (Jannik C. Meyer, U.C. Berkeley).
Поверхность графенового листа. Красной стрелкой отмечен крупный дефект высотой 2 ангстрема.
Увеличенное изображение области, свободной от дефектов.
Сложные интерференционные картины рассеяния вокруг точечных дефектов.

Рассеяние электронов на дефектах в графене

Ключевые слова:  графен, нанотехнология, наноэлектроника, периодика, углеродные материалы

Опубликовал(а):  Трусов Л. А.

14 июля 2007

Холмы и впадины, имеющиеся в волнистой структуре графена, не препятствуют движению электронов, а вот выбоины в виде атомных дефектов представляют большую проблему. Исследователи из Georgia Institute of Technology и NIST составили подробную карту электронной интерференции в графене, чтобы понять, как дефекты в этом двумерном углеродном кристалле влияют на распространение заряда.

Графен является так называемым баллистическим проводником, т.е. электроны не рассеиваются на атомах кристаллической решетки и могут двигаться с огромными скоростями. Хотя такие проводники и обладают некоторым сопротивлением, оно не зависит от их длины и не подчиняется закону Ома. Лучшими проводниками являются лишь сверхпроводники. Благодаря этому факту графен считается перспективным материалом для создания наноразмерной электроники.

Однако дефекты в структуре графена могут приводить к рассеянию электронов. Поэтому очень важно определить, какие дефекты наиболее нежелательны. Для этого команда исследователей вырастила графеновые листы на подложке SiC и проанализировала их при помощи специально разработанного сканирующего туннельного микроскопа, который способен измерять как физические характеристики поверхностей, так и визуализировать интерференционные картины, образующиеся при рассеянии электронов.

Результаты оказались не вполне логичными. Неоднородности в подложке из SiC привели к образованию больших выпуклостей и вогнутостей графенового листа, однако они не сильно влияют на распространение электронов. А вот дефекты, вызванные удалением атома углерода из структуры, вызывают сильное рассеяние, что приводит к формированию вокруг них ярко выраженной интерференционной картины. Также эти наблюдения подтверждают, что электроны в графене подобны фотонам в вакууме и их энергия обратно пропорциональна длине волны.

Работа была опубликована в журнале Science и определенно окажется полезной для развития графеновой наноэлектроники.


Источник: Nanowerk



Комментарии
Результаты вполне логичны. Двумерном углеродном кристалле графена выбоины в виде атомных дефектов (удалением атома углерода из структуры КЛАСТЕРНОЙ).

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанолента для нанокосы
Нанолента для нанокосы

4 февраля объявили лауреатов V Всероссийской премии «За верность науке»
4 февраля в здании Минобрнауки РФ состоялась торжественное награждение лауреатов V Всероссийской премии «За верность науке». 11 научно-просветительских проектов были отмечены престижной наградой.

Всероссийский съезд учителей и преподавателей химии
5 февраля в Московском университете в Шуваловском корпусе МГУ состоится Всероссийский съезд учителей и преподавателей химии, посвященный Международному году Периодической таблицы химических элементов, начало - 10 часов.

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.