Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Схема установки по получению УНТ из мелкодисперсного углерода в плазме.

Получение однослойных углеродных нанотрубок из углеродного порошка в плазме

Ключевые слова:  периодика, углеродные нанотрубки

Опубликовал(а):  Зайцев Дмитрий Дмитриевич

04 июля 2007

Как известно, углеродные нанотрубки (УНТ) благодаря своим необычным физико-химическим свойствам весьма перспективны для различных приложений. Этот новый материал доказал свою эффективность как источник холодной электронной эмиссии, как основа новых материалов с повышенными механическими характеристиками, как сорбент для газообразных и жидких веществ и т.п. Однако до сих пор новые материалы и устройства на основе УНТ не получили широкого распространения, что связано с высокой стоимостью и низкой производительностью существующих методов получения УНТ в макроскопических количествах. Эти методы, основанные на поверхностных процедурах термического испарения графита либо осаждения паров углеродосодержащих соединений на поверхность металлического катализатора, характеризуются ограниченной производительностью, которая пропорциональна площади активной поверхности. Существенное повышение производительности синтеза УНТ может быть достигнуто благодаря переходу к синтезу в объеме. В этом случае производительность процесса синтеза пропорциональна не поверхности, а объему реакционной камеры и может значительно превысить величину, характерную для традиционных методов синтеза УНТ. Такой переход был предпринят недавно группой сотрудников одного из канадских университетов (Université de Sherbrooke), которые использовали для получения УНТ в макроскопическом количестве из мелкодисперсного углерода термическую плазму высокочастотного плазмотрона.

Установка представляет собой серийно выпускаемый плазмотрон индукционного типа, питаемый источником переменного тока мощностью 60 кВт, работающим на частоте 3 МГц. Плазмотрон включает в себя: плазменную камеру с внутренним диаметром 5 см, реактор длиной 50 см и внутренним диаметром 15 см, камеру быстрого охлаждения, составленную из двух двустенных цилиндрических сегментов длиной 20 и 30 см и внутренним диаметром 15см. В область плазменного факела подается три независимых газовых потока - осевой, периферийный и несущий порошок. Первому потоку придается вращательное движение, обеспечивающее стабилизацию плазменного факела, а второй, ламинарный, служит для защиты стенок реактора от горячего газа. Фильтрационная система, которая служит для отделения материала, содержащего УНТ, от летучих компонентов, имеет три фильтровальных элемента диаметром 6 см и длиной 85 см на основе пористой керамики с диаметром пор 2,8 мкм. В качестве катализатора использовали частицы Ni размером < 1 мкм, Co размером < 2 мкм, CeO2 и Y2O3, подмешиваемые в различных пропорциях при суммарной концентрации на уровне порядка 1 ат % к мелкодисперсному графиту. В качестве буферного газа использовали смесь He-Ar различного состава при полном давлении около 500 Торр. Порошок подавали в плазму со скоростями 1,2 - 2 г/мин. Каждый эксперимент продолжался 20 мин., хотя система допускала непрерывную эксплуатацию в течение 9 часов. В экспериментах использовали 3 типа углеродного порошка различной степени измельченности с размером частиц 75, 45 и 16 нм. Исследования, выполненные методами термогравиметрии и спектроскопии комбинационного рассеяния, показали, что в оптимальных условиях производительность синтеза порошка, содержащего до 40% однослойных УНТ, достигает 100 г/час. При этом оптимальные условия соответствуют чистому гелию, частицам углерода размером 75 нм и скорости их подачи 1,5–2 г/мин. Приведенные показатели заметно превышают результаты, достигнутые при использовании электродугового и лазерного методов синтеза УНТ, при этом нанотрубки по своему качеству лишь немного уступают синтезируемым лазерным методом. Следует отметить, что мелкодисперсный углерод значительно дешевле кристаллического графита, поэтому нанотрубки, полученные в плазме из порошка гораздо дешевле.

А.В.Елецкий

1. K. S. Kim et al. J. Phys. D: 40, 2375 (2007).


Источник: ПерсТ




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

DVD-диск
DVD-диск

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.