Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Преломление света на границе раздела сред с показателями преломления n1 и n2 в случае обычного оптического материала (а) и метаматериала с отрицательным показателем преломления (б).
Рис.2. Фотография метаматериала с отрицательным показателем преломления для микроволнового излучения.

Наноазбука: метаматериалы

Ключевые слова:  метаматериалы, наноазбука, периодика

Автор(ы): Синицкий Александр

Опубликовал(а):  Синицкий Александр

15 июня 2007

Так соборы кристаллов сверхжизненных
Добросовестный свет-паучок,
Распуская на ребра, их сызнова
Собирает в единый пучок.
О.Мандельштам



Детская задачка «Что тяжелее, килограмм ваты или килограмм железных опилок?» поставит в затруднение разве что несообразительного первоклассника. Гораздо интереснее порассуждать на тему: «Какими свойствами будет обладать материал, который мы получим, если тщательно смешаем мелко измельченную вату и железные опилки?» Интуитивно понятно: чтобы ответить на этот вопрос, надо вспомнить свойства железа и ваты, после чего можно с уверенностью утверждать, что полученный материал наверняка будет, например, реагировать на присутствие магнита и воды. Однако всегда ли свойства многофазного материала определяются исключительно свойствами образующих его компонентов? Хочется ответить на этот вопрос положительно, ведь сложно представить себе, скажем, смесь диэлектриков (например, опилок и пенопластовых шариков), которая проводит электрический ток.

«Такое бывает только в сказках!» - постарается реабилитироваться первоклассник, вспомнив многочисленных колдунов и волшебниц из детских сказок, которые, смешивая всевозможные мухоморы, лягушачьи лапки и крылья летучих мышей, получали магические порошки, волшебные свойства которых, строго говоря, мухоморам и лягушачьим лапкам несвойственны. Впрочем, как это ни удивительно, современная наука знает примеры того, как совмещение вполне заурядных материалов позволяет создавать объекты, свойства которых не только не присущи используемым компонентам, но, в принципе, не могут быть найдены в природе и, как может показаться на первый взгляд, запрещены законами физики. «Это чудо!», - скажет первоклассник. «Нет, это метаматериалы!» - возразит современный ученый. И оба будут по-своему правы, потому что с точки зрения классической науки метаматериалы способны творить самые настоящие чудеса. Впрочем, сам процесс создания метаматериала тоже подобен волшебству, т.к. компоненты метаматериала недостаточно просто смешать, их необходимо правильно структурировать.

Метаматериалы – это композитные материалы, свойства которых обусловлены не столько индивидуальными физическими свойствами их компонентов, сколько микроструктурой. Термин «метаматериалы» особенно часто применяют по отношению к тем композитам, которые демонстрируют свойства, нехарактерные для объектов, встречающихся в природе.

Одним из наиболее горячо обсуждаемых в последнее время типов метаматериалов являются объекты с отрицательным показателем преломления. Из курса школьной физики хорошо известно, что показатель преломления среды (n) является величиной, показывающей во сколько раз фазовая скорость электромагнитного излучения в среде (V) меньше скорости света в вакууме (c): n = c / V. Показатель преломления вакуума равен 1 (что, собственно, следует из определения), тогда как для большинства оптических сред он больше. Например, обычное силикатное стекло имеет показатель преломления 1.5, а значит, свет распространяется в нем со скоростью в 1.5 раза меньше, чем в вакууме. Важно отметить, что в зависимости от длины волны электромагнитного излучения величина n может различаться.

Чаще всего о коэффициенте преломления материала вспоминают тогда, когда рассматривают эффект преломлении света на границе раздела двух оптических сред. Данное явление описывается законом Снеллиуса:

n1·sinα = n2·sinβ,

где α – угол падения света, пришедшего из среды с показателем преломления n1, а β – угол преломления света в среде с показателем преломления n2.

Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления (Рис.1а). Однако если формально подставить в закон Снеллиуса n2<0, реализуется ситуация, которая еще до недавнего времени казалась физикам абсурдной: лучи падающего и преломленного света находятся по одну сторону от нормали (Рис.1б).

На теоретическую возможность существования уникальных материалов с отрицательным показателем преломления указал советский физик В.Веселаго почти 40 лет назад. Дело в том, что коэффициент преломления связан с двумя другими фундаментальными характеристиками вещества, диэлектрической проницаемостью ε и магнитной проницаемостью μ, простым соотношением: n2 = ε·μ. Несмотря на то, что данному уравнению удовлетворяют как положительные, так и отрицательные значения n, ученые долго отказывались верить в физический смысл последних – до тех пор, пока Веселаго не показал, что n < 0 в том случае, если одновременно ε < 0 и μ < 0.

Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны – это любой металл при частотах выше плазменной частоты (при которой металл становится прозрачным). В этом случае ε < 0 достигается за счет того, что свободные электроны в металле экранируют внешнее электромагнитное поле. Гораздо сложнее создать материал с μ < 0, в природе такие материалы не существуют. Именно по этой причине работы Веселаго долгое время не привлекали должного внимания научной общественности. Прошло 30 лет, прежде чем английский ученый Д.Пендри (John Pendry) в 1999 г. показал, что отрицательная магнитная проницаемость может быть получена для проводящего кольца с зазором. Если поместить такое кольцо в переменное магнитное поле, в кольце возникнет электрический ток, а на месте зазора возникнет дуговой разряд. Поскольку металлическому кольцу можно приписать индуктивность L, а зазору соответствует эффективная емкость С, систему можно рассматривать как простейший колебательный контур с резонансной частотой ω0 ~ 1/(LC)-1/2. При этом система создает собственное магнитное поле, которое будет положительным при частотах переменного магнитного поля ω < ω0 и отрицательным при ω > ω0.

Таким образом, возможны системы с отрицательным откликом как на электрическую, так и на магнитную компоненту электромагнитного излучения. Объединить обе системы в одном материале впервые удалось американским исследователям под руководством Д.Смита (David Smith) в 2000г. Созданный метаматериал состоял из металлических стержней, ответственных за ε < 0, и медных кольцевых резонаторов, благодаря которым удалось добиться μ < 0. Несомненно, структуру, изображенную на Рис.2, сложно назвать материалом в традиционном смысле этого слова, поскольку она состоит из отдельных макроскопических объектов. Между тем, данная структура «оптимизирована» для микроволнового излучения, длина волны которого значительного больше отдельных структурных элементов метаматериала. Поэтому с точки зрения микроволн последний также однороден, как например, оптическое стекло для видимого света. Последовательно уменьшая размеры структурных элементов можно создавать метаматериалы с отрицательным показателем преломления для терагерцового и инфракрасного диапазонов спектра. Ученые ожидают, что благодаря достижениям современных нанотехнологий в самое ближайшее время будут созданы метаматериалы и для видимого диапазона спектра.

С точки зрения физики метаматериалы с отрицательным показателем преломления являются антиподами обычных материалов. В случае отрицательного показателя преломления происходит обращение фазовой скорости электромагнитного излучения; допплеровский сдвиг происходит в противоположную сторону; черенковское излучение от движущейся заряженной частицы происходит не вперед, а назад; собирающие линзы становятся рассеивающими и наоборот... И все это – лишь небольшая часть тех удивительных явлений, которые возможны для метаматериалов с отрицательным показателем преломления. Практическое использование таких материалов, в первую очередь, связано с возможностью создания на их основе терагерцовой оптики, что, в свою очередь, приведет к развитию метеорологии и океанографии, появлению радаров с новыми свойствами и средств всепогодной навигации, устройств дистанционной диагностики качества деталей и систем безопасности, позволяющих обнаружить под одеждой оружие, а также уникальных медицинских приборов.

Литература

    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity, Physical Review Letters 84 (2000) 4184.


В статье использованы материалы: Нанометр


Средний балл: 9.3 (голосов 12)

 


Комментарии
Mirin Nikolay A, 15 июня 2007 21:37 
Автору рекомендуется к прочтению оригинальная статья Веселаго. Большинство людей, работающих
с метаматериалами, умалчивает о таком факте, как высокая дисперсия оптических свойств вблизи точки отрицательного преломления. А это, пожалуй, один из красивейших и самых фундаментальных выводов статьи, помимо трюков с обычными оптическими явлениями.


Также можно почитать Мандельштама, чтобы цитировать его без орфографических ошибок.
Mirin Nikolay A, 16 июня 2007 00:27 
Хорошо, не используйте слово дисперсия.
Достаточно того, Веселаго показал также, что
оптические параметры не могут быть константами
в случае метаматериала. Т.е. пока доказана
теоретическая возможность реализации идеи только для очень узкого диапазона электромагнитного
излучения.
картинка-креатив со ступкой и пестиком (Баба-Яга)- класс! автор молодец :-)
Александр, не могли бы вы пояснить,
за счет чего, все-таки, достигается отрицательное значение магнитной восприимчивости.
Магнитной ПРОНИЦАЕМОСТИ
Максим Николаевич, 29 октября 2009 19:22 
Хочу обратить внимание автора на то, что В.Г.Веселаго не первым выдвинул гипотезу существования материалов с отрицательным показателем преломления.
Еще в 1940-м году Л.И.Мандельштам, читая лекции по оптике в Московском Государственном Университете, показал, что в средах, в которых групповая и фазовая скорости волны противоположны по направлению, луч, падающий из свободного пространства, отклоняется в противоположную сторону, чем обычно.
Давайте уважать труды ученых ;)
Сяпуков Ринат Рамилевич, 24 декабря 2010 22:23 
Очень полезная статья!
Но наверно все-таки частота w0=1/(LC)^(1/2) или w0 =(LC)^(-1/2)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

"Титановые" нанощупальца
"Титановые" нанощупальца

Сверхчувствительные сенсоры магнитного поля для магнитокардиографии
Группой Магнитооптики, плазмоники и нанофотоники Российского квантового центра (Сколково) совместно с сотрудники кафедры экспериментальной физики и научно-исследовательского центра функциональных материалов и нанотехнологий Физико-технического институту КФУ им. В.И. Вернадского при финансовой поддержке Российского научного фонда выполняется комплексный научный проект «Сверхчувствительные сенсоры магнитного поля для магнитокардиографии».

Выход новой версии программного обеспечения для моделирования физических процессов COMSOL Multiphysics®
От новых решателей и методов до разработки приложений и инструментов развертывания, новая версия программного обеспечения COMSOL® 5.2a расширяет возможности электротехнического, механического, гидродинамического и химического моделирования и оптимизации.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Сюрприз от передопированных купратов или куда пропали электроны? Уроки природы. Скопированные у бабочек гироидные наноструктуры лучше оригинала! Высокотемпературный сверхпроводник и топологический диэлектрик “в одном флаконе”. Эффективная очистка эпитаксиального графена от полимеров. Шестой Евро-азиатский симпозиум “Тенденции в магнетизме” EASTMAG-2016.

«Лаборанты» или «творцы»?
Гудилин Е.А.
«Да как эти нанотехнологии можно увидеть?», - спросила нас как – то замечательная женщина, настоящий творец будущего молодых талантов в нашей стране.
«И правда, как их увидеть, а главное, зачем?”, - подумалось мне, наивному, а потом осенило: ведь если не увидеть, то значит, и не показать, а поэтому их как бы и нет.

Форум тьюторов (1 часть)
Асмолова Екатерина
6 и 7 февраля 2016 года в рамках мероприятий X Всероссийской олимпиады школьников «Нанотехнологии – прорыв в будущее!» проходила Открытая Нанотехнологическая Школа-конференция для школьников, студентов и преподавателей. Представляем Вашему вниманию краткий фототчет Форума Тьюторов.

Лекция 10. Переходные металлы
Еремин Вадим Владимирович

Проектная работа

Сегодня становится все более популярной так называемая проектная работа школьников, однако на этот счет есть очень разные мнения. Мы были бы признательны, если бы Вы высказали кратко свое мнение по этому поводу путем голосования. Заранее благодарны!

Закон о реформировании РАН

В Совместном заявлении Совета по науке и членов Общественного совета Минобрнауки предлагается отозвать нынешний проект закона о "реформировании" РАН из Государственной думы и вернуться к его рассмотрению с соблюдением процедуры утвержденной постановлением Правительства РФ №851 от 25.08.2012, и указом Президента РФ №601 от 07.05.2012, которая была грубо нарушена. Мы предлагаем Вам высказать (анонимно) свое мнение в данном опросе, чтобы его статистические результаты были видны всем участникам опроса и общественности.

Проектная деятельность с точки зрения учителя

Это специальный опрос для учителей и представителей школ, которых мы просим оценить значимость предлагаемых материалов, мероприятий и перспективы их дальнейшего совершенствования на пути эффективного взаимодействия школ и ВУЗов. В опросе могут также участвовать школьники, студенты и аспиранты, особенно со своими критическими замечаниями в комментариях.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.