Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Увеличенный участок ростовой поверхности монокристалла ВТСП - до совершенства далеко!
Сверхпроводящая "пена", опущенная в жидких азот, с левитирующим над ней небольшим самарий-кобальтовым магнитом. До комнатной сверхпроводимости еще очень далеко, к сожалению
Из истории открытия ВТСП
Признаки сверхпроводимости
Теория БКШ
Структура ртуть-содержащих ВТСП-рекордсменов
Иерархическая дефектная структура ВТСП - дефекты при различных увеличениях
Схема формирования кристаллической структуры РЗЭ-бариевого сверхпроводящего купрата (кислород-дефицитная перовскитоподобная структура)
Схема (одна из спорных) формирования "сверхпроводящей" куперовской пары "дырок" в ВТСП
Ростовая поверхность плоской грани монокристалла ВТСП - как она выглядит под электронным микроскопом - сплошные дефекты!
Нанофлуктуации состава - центры пиннинга вихрей Абрикосова.
Крупнокристаллическая "таблетка" РЗЭ-бариевого ВТСП - купрата - основной элемент магнитных "левитаторов"
Уникальный кадр - прототип промышленного ограничителя предельно-допустимых токов на электрических подстанциях, произведенного в Германии с использованием ВТСП-элементов
Ростовые "двойники" РЗЭ-бариевых купратов. Изображение получено с помощью атомно-силовой микроскопии (стандартного варианта).
ВТСП в действии - автор настоящей заметки левитирует в юности на магнитном диске, парящем на иттрий-бариевыми купратными сверхпроводящими крупнокристаллическими блоками, помещенными в жидкий азот (температура МИНУС 196 по Цельсию).

Наноносители сверхпроводимости отличаются "термостойкостью" (комментарии)

Ключевые слова:  периодика, сверхпроводник

Опубликовал(а):  Зайцев Дмитрий Дмитриевич

01 июня 2007

Как человек, достаточно много (на протяжении всего взлета и очень перспективного существования) и с удовольствием (и в России, и в Японии и даже - еще студентом - в США) занимавшийся высокотемпературной сверхпроводимостью (сокращенно - ВТСП, обычно это сложные купраты бария и редкоземельных элементов, а также другие очень интересные соединения) я прочитал статью на портале CNEWs о ВТСП. Сейчас это редкость, поскольку все разработки уже несколько лет ведутся в промышленных компаниях, причем в не относящихся к "нано" направлениях - линии ЛЭП и подводящие провода из висмут-содержащих ВТСП-лент или "ВТСП второго поколения" (гибкие двуосно-текстурированные металлические ленты со многими тонкопленочными покрытиями). Это просто замечательно, что мечта Человечества о материалах без электрического сопротивления живет и процветает. В то же время, очень хочется поубавить оптимизм коллег, давших информацию о "наноносителях" сверхпроводимости.

"Как сообщает PhysOrg, ученым из Принстонского университета, с помощью специально сконструированного микроскопа удалось составить подробную карту электропроводности сверхпроводящей высокотемпературной нанокерамики на площади 30 квадратных нанометров. (CNEWs)"

- Проблема в том, что в сверхпроводящем состоянии ВТСП НЕ ИМЕЕТ электрического сопротивления, поэтому нет смысла говорить о "карте электропроводности". По опыту также знаю, что отполировать керамический образец ВТСП до качества, приемлемого для получения хорошей картинки на сканирующем зондовом микроскопе - большое искусство. Но даже если это удалось сделать, поверхность образца становится безнадежно испорченной, в том плане, что все механически созданные дефекты и напряжения, а также загрязнения, созданные при полировке, приведут к локальным искажениям состава и существеннейшим изменениям электрофизических (в том числе сверхпроводящих) характеристик. Даже если образец не полировали, то состав и свойства его поверхности неоднородны и после "чистого скола" в вакууме. Поэтому данные приведенных в статье измерений нужно трактовать с большой осторожностью.

"На основе полученных данных учеными было сделано важное открытие: как выяснилось, сверхпроводящие электронные пары локализованы в определенных участках поверхности наноматериала, и даже с повышением температуры до +10o Цельсия они не меняют своего расположения. (CNEWs)"

- Здесь допущена вопиющая неточность в переводе! В оригинале - "... Even at 10 degrees Celsius above Tc...". Это полностью меняет всю картину, приведенную в заметке. Для простоты - "на 10 градусов выше Тс" при Тс равной -196 градусов по Цельсию (температура перехода в сверхпроводящее состояние для "фазы 123" - YBa2Cu3O6.9) означает всего лишь МИНУС 186 градусов, то есть температуру вполне космического, неземного, холода, но никак не температуру охладителя среднего отделения бытового холодильника для прохладительных напитков. ..

Я бы приведенные в статье данные связал с тем, о чем говорил выше - о неоднородности поверхности ВТСП. Это известный факт.

"Ранее наиболее «горячими» сверхпроводниками считались специальные материалы, охлажденные до -100o Цельсия. Они были открыты более двух десятилетий назад. (CNEWs)"

- Ранее, да и сейчас тоже, наиболее "горячими" ВТСП считались и считаются ртуть-содержащие ВТСП, полученные впервые на Химическом факультете МГУ в лаборатории профессора Е.В.Антипова. Они, действительно, под большим давлением имеют температуру перехода в сверхпроводящее состояние около 165 К (минус 108 градусов Цельсия). Однако пока это предел, который никому не удалось практически преодолеть.

"Однако с течением времени ученым стало известно, что сверхпроводники особого типа могут работать при температуре, близкой к 0o Цельсия. Сегодня многие ученые допускают, что в недалеком будущем можно будет достичь сверхпроводимости даже при комнатной температуре. Теперь, благодаря новому инструменту, уверенность удалось подкрепить фактами. (CNEWs) "

- Я был бы рад увидеть хотя бы одного такого "ученого". На моей памяти "комнатную" сверхпроводимость "открывали" минимум 5 раз. К сожалению, такие первооткрыватели такой сверхпроводимости, как очень быстро обнаруживалось, были либо честно заблуждающимися людьми, либо откровенными шарлатанами, желавшими нездоровой известности. Большинство уважающих себя ученых, случайно нашедших комнатную сверхпроводимость (такие тоже были), сами объективно опровергли такие результаты. Хотя я верю, что за открытие комнатной сверхпроводимости, если оно когда-либо состоится вопреки теоретическим предсказаниям (ну, бывает, люди ошибаются, особенно теоретики) дали бы еще одну Нобелевскую премию, которых сверхпроводники собрали немало (целых 5: Камерлинг-Оннес за сверхпроводящую ртуть высокой очистки (1913 г.), за теорию БКШ (Бардин-Куппер-Шриффер, 1972 г.), за эффект Джозефсона (эффект туннелирования, 1973 г.), Беднорц и Мюллер - за собственно ВТСП (1987 г.) и Гинзбург с компанией зарубежных "соавторов" - за физическую картину сверхпроводимости, 2003 г.).

... Насчет "подтвержденных фактов" - см. выше о неточностях перевода...

"Новый научный инструмент создан на основе обычного сканирующего туннельного микроскопа. С его помощью становится возможным построить карту сверхпроводимости материала с атомарным разрешением, причем в реальном масштабе времени – например, как функцию температуры. (CNEWs)"

- Просто замечу, что на картинках в оригинале даны метки 5 нм, что еще совсем не означает "атомного разрешения", хотя в заметке (оригинале) и отмечается, что созданный СТМ-микроскоп на это способен.

... И в конце хотелось бы отметить, что называть "куперовские пары" наноносителями заряда не стоит - не о "нано" идет речь...


P.S. Кстати, и ЛЭП из сверхпроводников все же пока так и остаются мечтой. Не то, чтобы это было невозможно - просто экономически невыгодно (дорого). Впрочем, о перспективах ВТСП лучше почитать электронный журнал Перст (Перспективные технологиии). Это очень хороший источник информации "для всех".

Е.А.Гудилин



Мы с большим уважением относимся к порталу CNEWs, считая, что он выполняет огромную, полезную и нужную всем работу, являясь лидером популяризации новых научных идей. Просьба рассматривать это статью лишь как пример того, что ОДНА небольшая неточность может вызвать большие погрешности в интерпретации. К сожалению, и у нас на сайте были подобные промахи, они фактически неизбежны, однако мы приветствем критику и спор, поскольку в них рождается истина.


Источник: CNews



Комментарии
Так держать!
Добавил картинок. Надеюсь, интересных. Теперь новость выглядит гораздо забавнее.
Ну вы обзавите, что ли, как-нибудь раздел специально для опровержений... Вроде "Мракобесия" в "Газете.ру".

ЗЫ: А статья хорошая. Посмеялась.
Трусов Л. А., 02 июня 2007 20:42 
и сайт переименовать в www.nanobesie.ru
Смолянкина Ольга Юрьевна, 15 сентября 2009 08:26 
странно, что я раньше не заметила эту статью!
да, автор молодец, что поднял этот вопрос.
люди "в теме", конечно, сразу обнаруживают
неточности перевода и интерпретации и просто
фальсифицированные данные. но ведь есть и те,
которые интересуются темой, но оригинальные
статьи авторитетных учёных и другие достоверные
источники информации им недоступны или сложны
для понимания, поэтому люди довольствуются
популярными источниками, не всегда
проверенными. и в итоге наивно убеждены, что
КТСП уже открыта, а левитация и телепортация -
это уже не проблема и т.п. :(
В таком случае наиболее правильным выходом является разработка технологии и выпуск конкретной продукции, содержащей комнатные сверхпроводники. Именно этим успешно занимаются специалисты из НИИЭТ(Воронеж) и УГТУ-УПИ(Екатеринбург)
Ну да!
Трусов Л. А., 15 октября 2009 14:44 
Смолянкина Ольга Юрьевна, 21 октября 2009 04:38 
Виктор Борисович, мы в нашей группе до сих пор
обсуждаем ваше видео и ваш результат, но не
можем прийти к единому мнению... :)
Уважаемая Ольга! Мы Вас прекрасно понимаем и поэтому ни в коем случае не навязываем свое мнение. В первую очередь, Вы должны слушать мнение своего научного руководителя.
Мы же не рассчитываем на быстрое признание или иные заслуги, так как над проблемой КТСП работали огромное количество специалистов более 20 лет. Сейчас у нас есть единомышленники как в области теории, так и в области эксперимента и нам пока этого достаточно.
Трусов Л. А., 28 октября 2009 11:40 
а образцы есть?
Смолянкина Ольга Юрьевна, 29 октября 2009 19:08 
Виктор Борисович, в этом вопросе личное мнение
должно остаться на втором плане, поскольку
существует объективная реальность эксперимента!
И если он проведён правильно, то нет оснований
сомневаться в результате.
Поэтому я искренне надеюсь, что у вас всё
получится

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

"Наноцветы" оксида цинка
"Наноцветы" оксида цинка

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.