Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Подложка со 160 мембранами
Сортировка молекул мембраной
Вид мембраны через электронный микроскоп: поры белого цвета

Супертонкий фильтр, толщиной 50 атомов, разделяет отдельные макромолекулы

Ключевые слова:  биоинженерия, кремний, наноструктура, нанотехнология, периодика, топливный элемент

Опубликовал(а):  Кушнир Сергей Евгеньевич

21 февраля 2007

Недавно разработанная пористая мембрана может коренным образом изменить способы, с помощью которых врачи и ученые изучают объекты микромира.

Фильтр толщиной 50 атомов выдерживает внезапный скачок давления и в перспективе может сыграть ключевую роль в более тонкой очистке крови у пациентов, зависимых от процедуры диализа, в ускорении ионного обмена в топливных элементах, в создании новой среды для выращивания стволовых клеток, в очищении воздуха и воды на наноуровне в больницах, операционных.

Новая мембрана в тысячи раз тоньше своих аналогов, используемых в настоящее время. Её размер соответствует одной четырехтысячной толщины человеческого волоса.

«Это невероятно. Мы получили материал такой же толщины, как и молекулы, которые он сортирует. Он изобилует порами, но способен выдержать достаточное давление, чтобы использование нанофильтрации можно было сделать обычной практикой, - рассказывает Кристофер Штример (Christopher Striemer), один из создателей мембраны. - Такая ультратонкость ведет к повышению эффективности и уменьшению неизбежных потерь. Так что мы способны создавать вещи, которые не могли быть получены при использовании применяемых в настоящее время материалов».

Мембрана представляет собой 15-нанометровый слой кристалла кремния, материала, который сейчас используется в производстве компьютерных микрочипов. В лаборатории Филиппа Фоше (Philippe Fauchet), профессора Университета Рочестера, Штример обнаружил мембрану, во время изучения процесса роста кристаллов кремния под действием термической обработки.

Он использовал кристалл толщиной около 50 атомов, т.к. это давало возможность увидеть в электронный микроскоп структуру образца, сформированного при различных температурных режимах.

Поры мембраны, диаметр которых варьируется от 9 до 30 нм, формируются при быстром термическом обжиге из спонтанно образующихся пустот

В сотрудничестве со Штримером и Фоше, Джеймс Л. МакГрэт (James L. McGrath), ассистент профессора биоинженерии и его студент, Том Габорски, установили, что нанометровые поры мембраны делают отделение таких малых объектов, как белки, более эффективным, чем сейчас.

Существующие фильтры молекулярного уровня основаны на полимерной технологии. Поры в полимере представляют собой спиралевидные тоннели. Время на их прохождение молекулами увеличивается, что приводит к сильному засорению.

Во время проверки мембраны Габорски разделил два простых белка, масса и формы которых отличаются незначительно: бычий сывороточный альбумин и гамма-имунноглобулин. Через шесть минут альбумин был успешно отделен, в то время как при использовании коммерчески доступных мембран на это потребовались бы часы.

Для дальнейшего совершенствования мембраны и разработки перспективных методов диализа крови группе исследователей Университета Рочестера компанией Johnson & Johnson недавно был выделен грант в размере 100000 долларов.

Уже намечены интересные исследования, предусматривающие использование наномембран для роста нейронов из стволовых клеток.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Новогодне-праздничный коллаж
Новогодне-праздничный коллаж

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Графеновые маски выходят на борьбу с Covid 19. Графен губит вирусы. Сенсор для противотуберкулезного препарата. Взаимодействие Дзялошинского-Мории и механическая деформация. Скирмионы займутся растяжкой?

Ученые разработали технологию трехмерной печати генно-инженерных конструкций для направленной регенерации костных тканей
Группа российских ученых разработала оригинальную технологию трехмерной печати персонализированных изделий из биоактивной керамики и создала персонализированные ген-активированные имплантаты. Проведен комплексный физико-химический и биохимический анализ экспериментальных образцов ген-активированных материалов и персонализированных имплантатов для инженерии и направленной регенерации костных тканей, полученных с использованием технологий трехмерной печати, включая доклинические исследования на крупных животных.

Ученые из ИОФ РАН осуществили лазерный перенос графена
Исследователи из Института общей физики им. А.М. Прохорова РАН (ИОФ РАН) напечатали «смятый» графен на кремниевой подложке, используя метод лазерно-индуцированного прямого переноса. Этот относительно простой процесс может заменить трудоемкие литографические способы создания гарфеновых структур в перспективных устройствах микроэлектроники.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.