Материалы и пленочные структуры спинтроники и стрейнтроники

Институт общей и неорганической химии им. Н.С. Курнакова Российской Академии Наук (ИОНХ РАН)

Размеры элементов электронных устройств

Нобелевские лауреаты по спинтронике

Альбер Ферт и Петер Грюнберг обнаружили эффект ГМС в многослойных структурах Fe/Cr H=0 H=H

	11 0	
Магнит	Fe	Fe
немагнитный Ме	Cr	Cr
Магнит	Fe	Fe
немагнитный Ме	Cr	Cr
Магнит	Fe 🗧 🗲 Fe	Fe
немагнитный Ме	Cr	Cr
Магнит	\Rightarrow \Rightarrow Fe	\Rightarrow \Rightarrow Fe

НАПРАВЛЕНИЯ СПИНТРОНИКИ

Композитные структуры

ферромагнетик/полупроводник

Гомогенные ферромагнитные полупроводники

Требования к материалам

простота методик синтеза материалов, возможность включения изделий, полученных на их основе, в стандартные полупроводниковые схемы на основе Si, GaAs, GaN

сохранение в полученных магнитных полупроводниковых материалах структуры и физико-химических свойств исходных полупроводниковых матриц без ухудшения их функциональных характеристик

□ сохранение магнитной ориентации в полупроводниках с n- и pподвижными носителями тока при температурах выше комнатных

EuO – ферромагнитный полупроводник

Материал	Температура Кюри, К
EuO	69,4
EuO – CaO	69,4
EuO-SmO	130
EuS	16,5
EuSe	3,8

Mathias, B.T. Ferromagnetic Interaction in EuO // Phys. Rev. Lett. $-1961. - Vol. 7. - N_{2} 5. - P. 160-165.$

Пленочные композитные структуры

Kim, J.H. J. Appl. Phys. – 2002. – Vol. 92. – P. 6066-6071.

Loukya B. Journal of Magnetism and Magnetic Materials. – 2013. – T. 345. – C. 159-164

Ферромагнетизм SnO₂

Ферромагнитные свойства таких соединений определяются большим количеством кислородных дефектов в поверхностных областях наночастиц

Назаров Д.В. и др./ Сб. трудов 17-й межд. конф. «Порядок, беспорядок и свойства оксидов». -Ростов-на-Дони- 2014. - С. 199-200

Физико-химические свойства шпинели состава Mg(Fe_{1-x}Ga_x)₂O₄

Зависимость намагниченности насыщения и ширины запрещенной зоны Mg(Fe_{1-x}Ga_x)₂O₄ от состава

- $1 (MgFe_2O_4)_{0.8}(MgGa_2O_4)_{0.2}$
- 2 $(MgFe_2O_4)_{0.7}(MgGa_2O_4)_{0.3}$
- 3 $(MgFe_2O_4)_{0.65}(MgGa_2O_4)_{0.35}$
- 4 $(MgFe_2O_4)_{0.2}(MgGa_2O_4)_{0.8}$
- $5 MgFe_2O_4$

Наиболее перспективной является шпинель состава $Mg(Fe_{0,8}Ga_{0,2})_2O_4$

Г.Д. Нипан, В.А. Кецко, А.И. Стогний и др. // Неорган. материалы. 2010. Т. 46. №4. С. 490-494.

Вольтамперные характеристики

ТГА-ДСК (поток воздуха) геля (глицин-нитратный метод)

MgFe_{1.6}Ga_{0.4} (NO₃)₈·(NH₂-CH₂-COOH)_{4.44}·(H₂O)_{0.5}

Термические характеристики гелей

Восстановитель	Время горения, сек.	t _₽ °C	t _{ad} ,⁰C
глицин	130	1100	3000
глицин + уротропин	78	1040	3250
глицин + крахмал	112	920	2900
глицин + мочевина	154	815	2600

t_г – температура горения геля

20

12

t_{аd} – температура адиабатического горения

Параметры компонентов

структур

Подложка	Параметр решётки (Å)	Коэффициент термического расширения (10 ⁶ / °C)	Особенности кристаллизации	
Si	5,43	2,6	SiO ₂ , силициды	
GaN	3,19	5,6	дефекты (>10 ⁷ см ⁻²)	
GaAs	5,65	6,4	Т _р ≥550°С, активен Аз↑	
MgFe ₂ O ₄	8,36	10,0		
GGG	12,37	8,2		
YIG	12,38	10,4	пет проолем 13	

РЭМ изображение поперечного среза пленки Mg(Fe_{0,8}Ga_{0,2})₂O₄ с буферным слоем SiO₂ на Si

Свеженапыленные пленочные образцы

Пленочные образцы после отжига при 950⁰С

Буферный слой SiO₂

Комплекс локальной ионно-лучевой обработки на базе Helios NanoLab (FEI Company, США)

Фокусированные до Ø7 нм пучки ионов галлия, 30 кэВ, 10-50 пА

Внешний вид комплекса Helios NanoLab Схема получения поперечных сечений с помощью фокусированных ионных пучков

РЭМ изображение поперечного среза гетероструктуры Mg(Fe_{0,8}Ga_{0,2})₂O₄ /Si

Поверхность MgFe_{1.6}Ga_{0.4}O₄ на Si после кристаллизации в изотермическом режиме

Поперечное сечение MgFe_{1.6}Ga_{0.4}O₄ /Si после кристаллизации в квазиимульсном режиме

Поверхность MgFe_{1.6}Ga_{0.4}O₄ на Si после кристаллизации в квазиимпульсном режиме

Схема процесса формирования носителей информации

Основные стадии процесса травления структуры

Сформированные гетероструктуры **YIG/Si**

mode SE

— 3 µm — Helios D435

- 500 nm

Helios D435

Спиновый полевой транзистор

Структура транзистора на основе MgFe_{1.6}Ga_{0.4}O₄ в разрезе

Исходная поверхность GaN

Ионно-лучевой процесс сглаживания рельефа поверхности

Стогний А.И., Новицкий Н.Н., Стукалов О.М. // Письма в ЖТФ. 2002. Т. 28. №1. С. 39.

Поверхность GaN после обработки

Расчет толщины барьерного слоя her Al2O3

Схематичное изображение межфазной границы **А/В** до (а) и после (б) образования слоя продукта.

Схематичное изображение сглаживающего слоя оксида алюминия заданной толщины (<10 нм) на поверхности GaN:

а) однородный, аморфный слой {Al₂O₃} заданной толщины, *h*{Al₂O₃}; б) кристаллический слой <Al₂O₃> заданной толщины, *h*<Al₂O₃>. Данные элементарные ячейки объемом *h*{Al₂O₃} × *l*²{Al₂O₃} и *h*<Al₂O₃> × *l*²<Al₂O₃> содержат одинаковое количество моль {Al₂O₃} и <Al₂O₃> соответственно.

$$\Delta G^{cell} = \Delta G^{cell}_{\{Al_2O_3\}} - \Delta G^{cell}_{\langle Al_2O_3\rangle} = h_{\{Al_2O_3\}} \cdot \left(\frac{\Delta G^f_{\{Al_2O_3\}} - \Delta G^f_{\langle Al_2O_3\rangle}}{V_{\{Al_2O_3\}}} \right) + \gamma^S_{\{Al_2O_3\}} - \chi \cdot \gamma^S_{\langle Al_2O_3\rangle} + \gamma_{\langle GaN \rangle | \{Al_2O_3\}} - \chi \cdot \gamma_{\langle GaN \rangle | \{Al_2O_3\}} - \chi$$

Jeurgens L. P. H. et al. // Physical Review B. 2000. V. 62. Nº. 7. P. 4707.

Расчет толщины барьерного слоя Al₂O₃

(а): Зависимость полной, объемной свободной энергии, а также поверхностной ("surface") и межфазной энергий ("interface") Гиббса от толщины барьерного слоя *h^{cr}*(Al₂O₃);

(b): Зависимость толщины барьерного слоя $h^{cr}(Al_2O_3)$ от температуры T

структура YIG/GaN

Изображение прозрачной пленки золота на ЖИГ

Основные процессы синтеза МПК

Поперечное сечение капсулированного МПК

Стрейнтроника

Диаграмма «рассеиваемая энергия переключения – время задержки»

Пленка Со на профилированной поверхности PZT

Общий вид гетероструктуры Co/PZT с профилированной поверхностью PZT подложки. Поперечное сечение гетероструктуры Co/PZT с профилированной поверхностью PZT подложки.

6

Стрейтроника: механический контакт пленки YIG с керамикой PZT. Нет перспективы развития.

Рис. 1. СВЧ-резонатор на основе YIG - РZТ-структуры, перестраиваемый магнитным и электрическим полями. (а) Схема устройства; GGG - гадолиний-галлиевый гранат. (б) Смещение линии ферромагнитного резонанса под действием электрических полей различной полярности. Одно из перспективных направлений магнитной стрейнтроники - электрически управляемые устройства СВЧ- диапазона. Принцип их действия основан на индуцированном в ФМ-слое эффективном поле магнитной анизотропии с помощью деформаций, созданных ПЭ-слоем. Поле одноосной анизотропии может приводить к существенному изменению ориентации намагниченности магнитного слоя и, как следствие, к управляемому сдвигу частоты ферромагнитного резонанса (ФМР) структуры. На рисунке изображён СВЧ-резонатор/фильтр, перестраиваемый по частоте магнитным и электрическим полями. Резонатор содержит пластину PZT, к которой приклеена эпитаксиальная плёнка железоиттриевого граната (YIG). Структура помещена в поле Н, направленное перпендикулярно её плоскости. С помощью микрополоскового преобразователя в плёнке YIG возбуждают ФМР на частоте f= y(H-4πM), где y=2,8 МГц Э-1 и 4πМ 1750 Гс гиромагнитное отношение и намагниченность YIG. PZT-пластина при приложении электрического напряжения к её электродам деформируется, эта деформация передаётся YIG-плёнке, что приводит к изменению поля анизотропии и сдвигу частоты ФМР. Одновременно этот резонатор можно перестраивать (но достаточно медленно) в широком диапазоне частот 2 - 10 ГГц, изменяя внешнее намагничивающее поле Н.

🔛 А.А. Бухараев, А.К. Звездин, А.П.Питаков, Ю.К.Фетисов // УФН. 2018. Т.188. № 12. С. 1289–1330.

Стрейтроника: механический контакт 1D магнонного кристалла YIG с керамикой PZT. Где клей и где контакт?

Рис. 2 Микрофотография изготовленных полос YIG. Красные пунктирные прямоугольники обозначают электроды. Комбинация деформации и спин-волновой связи может лежать в основе новой ветви функциональной магноники - магнон-стрэйнтроники. Таким образом, управляемая напряжением спиновая волна может потенциально использоваться для логических схем на основе спиновых волн с малым рассеиванием и элементов памяти.

Структура, описанная в работе [2] состоит из трех полос YIG толщиной 10 мкм, шириной 500 мкм, помещенных на подложку GGG толщиной 500 мкм. Намагниченность насыщения YIG составляет M=139 Гс. На рисунке эти полосы обозначены S1, S2 и S3.

Хромовый (Cr) электрод толщиной 500 нм был нанесен на поверхность пьезоэлектрика из титаната цирконата свинца (PZT). Из-за достаточно толстого слоя PZT верхний электрод не влияет на распространение спиновых волн в YIG. Чтобы пренебречь влиянием металлического слоя на динамику спиновых волн, на другой стороне PZT были нанесены два Cr-электрода толщиной 50 нм. Механическая связь полос PZT и YIG была достигнута с использованием термоотвержденного двухкомпонентного эпоксидного клея. В работе показано, что такая композитная магнон-стринтронная структура дает возможность для изготовления магноновых платформ для энергоэффективной обработки сигналов.

Спасибо за внимание

