Международная химическая олимпиада школьников и ее роль в химическом образовании

В.В. Еремин, А.К. Гладилин

ПЛАН

- 1. Ввеление
- 2. История МХО
- 3. Правила и организация МХО
- 4. Россия в МХО
- 5. Методические аспекты и результаты МХО
- 6. Роль МХО в системе химического образования
- 7. Выводы
- 8. Литература и интернет-ссылки
- 9. Вопросы для контроля

1. Введение

Международная химическая олимпиада школьников (далее – МХО) – это ежегодное соревнование школьников, которое проводится для развития международных контактов в химии. МХО – это высший уровень химического соревнования, она венчает мировую систему национальных олимпиад. В мире по-разному относятся к научным олимпиадам: в России, странах Восточной Европы и Юго-Восточной Азии они играют важную роль и являются одним из основных элементов системы химического образования, в большинстве стран Западной Европы это – всего лишь один из видов образовательной деятельности школьников, а в отдельных странах вообще считают, что олимпиады мешают качественному образованию, отвлекая участников от учебы в школе. Несмотря на такое различие, для всех стран Международная олимпиада – очень авторитетный форум, и участие в ней считается важной государственной задачей. Благодаря этому в настоящее время МХО охватила практически все страны, где существует химическое образование и где проводятся национальные олимпиады по химии.

Цели Международной олимпиады возвышенны и благородны. Согласно Положению, сформулированному еще на самой первой олимпиаде, «МХО предназначена для стимулирования активности школьников, интересующихся химией, путем независимого и творческого решения химических задач. Она помогает усилить дружеские отношения среди молодых людей из разных стран, поощряет международное взаимодействие и понимание». Последняя фраза отражает главную задачу и основной результат проведения МХО. Наш более чем 15-летний опыт работы в МХО подтверждает, что Международная олимпиада полностью выполняет эту задачу. Благодаря ей в мировой системе химического образования сложилось крупное и дружное сообщество людей — школьников, учителей, студентов, научных сотрудников, доцентов, профессоров, тем или иным способом причастных к МХО и прилагающих свой труд к развитию олимпиадного движения в мире. К этому сообществу надо отнести и чиновников — тех из них, кто обладает государственным мышлением и способствует развитию науки и образования.

Подготовка к МХО требует от каждой страны значительных усилий, так как уровень этого соревнования очень высок, а результаты зависят от эффективности национальной системы образования и тем самым служат одним из индикаторов ее успешности. Ниже мы рассмотрим историю МХО, правила ее организации и проведения, методические аспекты и результаты, а также обсудим роль нашей страны в мировом олимпийском движении.

2. История МХО

Идея МХО родилась в бывшей Чехословакии весной 1968 года. В то время, названное впоследствии «пражской весной», страна во главе с новым руководством начинала экономическую реформу, пытаясь создать «социализм с человеческим лицом». Общество почувствовало вкус свободы, люди были полны энтузиазма и активно стремились к контактам с другими странами. Одной из новых идей стало предложение организовать Международную Химическую Олимпиаду. Чехословацкий Национальный комитет по химическим олимпиадам при поддержке Министерства образования разослал приглашения для участия в ней всем дружественным социалистическим странам. Это приглашение приняли только Польша и Венгрия, а остальные страны его проигнорировали. Это было связано с тем, что отношения между Чехословакией и СССР в мае 1968 резко ухудшились, поэтому Советский Союз объявил химической олимпиаде бойкот, а ближайшие союзники — Болгария и ГДР — его в этом поддержали.

И впоследствии политика не раз вмешивалась в дела химии. Так, в 2005 году МХО проводилась на Тайване и Китай отказался от участия в ней. Были случаи бойкота и после этого, к счастью, единичные.

В качестве модели для проведения первой МХО была выбрана химическая олимпиада в Советском Союзе — именно она являлась образцом для всех стран социалистического блока. Соревнование состояло из двух туров — теоретического (4 задачи) и экспериментального (2 задачи). В каждой команде было по 6 человек. Победитель (к сожалению, его имя найти не удалось) показал 100%-ный результат. На первой олимпиаде были сформулированы и утверждены основные принципы МХО, которые с небольшими поправками сохраняют свою силу и поныне. Так было положено начало международному химическому олимпийскому движению.

На второй олимпиаде, которая прошла через год в Катовице (Польша), к числу странучастниц присоединилась Болгария, а Советский Союз и ГДР прислали наблюдателей. Наша страна впервые приняла участие только в 3-й олимпиаде, в Венгрии (1970). А уже через год, в 1972-м, очередную олимпиаду принимала Москва.

Идея МХО оказалась очень привлекательной для мирового образовательного сообщества. Число стран-участниц быстро росло, добавлялись все новые социалистические страны, с 1975 г. к ним примкнули представители западного мира — Швеция, Бельгия и ФРГ, а в 1980 г. МХО впервые была организована в капиталистической стране — Австрии (Советский Союз ту олимпиаду бойкотировал). После 1991 г. число стран увеличилось сразу на десяток за счет бывших республик Советского Союза. Уже в новом тысячелетии к странам-участницам примкнули Португалия, Исландия, Япония, Армения, Молдова, Израиль, Сербия. В последней МХО в Тайланде в 2017 году участвовало 73 страны всех континентов, включая Африку. Рекордсменом по числу стран является Баку: в МХО-2015 участвовало 79 стран.

За прошедшие десятилетия изменилось очень многое в МХО: усложнился регламент — он стал более формализованным и охватывает все возможные ситуации и правила поведения на олимпиаде; намного вырос научный уровень задач — для их решения теперь совсем недостаточно того, что мы называем школьной программой; резко увеличилась сложность организации и проведения МХО, не говоря о затратах (типичный бюджет составляет несколько миллионов долларов). Таким образом, современная МХО по своему уровню ушла очень далеко от самых первых олимпиад. Неизменными остались только ее принципы, среди которых главные — честность, открытость, сотрудничество и понимание. А также любовь к химии, которая объединяет всех участников — и школьников, и взрослых!

3. Правила и организация МХО

MXO проходит ежегодно, в июле месяце, каждый раз в новой стране. Заявку на проведение олимпиады страна-организатор подает заранее, за 5-7 лет до самого события. Непо-

средственная организация обычно ложится на плечи крупного образовательного учреждения, как правило, одного из ведущих университетов страны, а финансовые расходы берет на себя государство через Министерство образования.

Каждая страна посылает на Олимпиаду команду, состоящую из 4 школьников – победителей национальной олимпиады по химии, и двух руководителей – «менторов». Школьники соревнуются в решении теоретических задач и выполнении химических экспериментов, а менторы участвуют в обсуждении задач, переводе задания на родной язык, проверке решений и апелляциях.

Само соревнование состоит из двух туров — экспериментального и теоретического. Экспериментальный тур включает две-три лабораторные работы, среди которых обычно — количественный анализ, органический или неорганический синтез, изучение кинетики реакции первого порядка или качественный анализ органических и неорганических веществ. Теоретическое задание состоит из 7-10 сложных многоуровневых задач, охватывающих все основные разделы химии. Каждый тур проводится в отдельный день и занимает 5 часов, между турами — день отдыха. Максимальная оценка за экспериментальный тур — 40 баллов, за теоретический — 60 баллов, всего — 100 баллов. Абсолютный рекорд в нынешнем тысячелетии довольно долго принадлежал россиянину Алексею Зейфману — 96.75 балла (2005 год, Тайвань), однако в 2016 году он был побит румыном Андреем Илиеску (96.85 балла). Для сравнения: типичный результат сильного, эрудированного университетского профессора — 50-60 баллов, а хорошего школьника без специальной подготовки — менее 30 баллов. Это говорит о высоком научном уровне МХО.

К такой олимпиаде надо готовиться очень серьезно. Но по правилам МХО время командной подготовки (учебные сборы) не превышает двух недель. Поэтому, чтобы облегчить тренировку и сузить круг рассматриваемых вопросов, организаторы за полгода до олимпиады рассылают странам-участникам набор тренировочных (подготовительных) задач, в которых указаны все основные темы предстоящей олимпиады. По мотивам этого набора задач и происходит подготовка команд.

Победители определяются по сумме баллов за теоретический и экспериментальный туры. Медалей, как обычно, три типа — золотая, серебряная и бронзовая, но они вручаются сразу нескольким десяткам участников. По правилам, золотые медали получают 10 ± 2 %, серебряные — 20 ± 2 %, и бронзовые — 30 ± 2 % школьников. Общее число участников приближается к 300, поэтому золотыми медалями награждают 30 и более человек. Официального командного зачета нет, но неофициально его всегда подсчитывают — по числу медалей, сумме мест или баллов. При любой системе подсчета лучшей обычно является китайская или тайваньская команда, а Россия почти всегда входит в пятерку лучших стран, а зачастую — и в тройку лучших.

Еще несколько интересных моментов. Все задания – и теоретические, и экспериментальные – предлагаются организаторами. На олимпиаде эти задания обсуждает Международное жюри, состоящее из руководителей всех команд. Обсуждения бывают довольно бурными, и нередко в задания вносятся значительные поправки, обычно в сторону упрощения. Поскольку руководители команд знают задания, на олимпиаде они живут отдельно от своих школьников, всю заботу о которых берут на себя организаторы. Здесь надо сказать добрые слова о гидах команд, которые сопровождают школьников в течение всей олимпиады. Эти молодые люди, которые знают специфику страны-организатора МХО, помогают своим подшефным адаптироваться в чужой стране и преодолеть культурные различия.

Официальный язык олимпиады — английский¹, но школьники получают задания и пишут решения на родном языке. Перевод заданий с английского языка на национальный осуществляют руководители команд (менторы). Они же потом, параллельно с организаторами, проверяют решения своей команды и выставляют оценки. Эти оценки сравниваются с оценками, поставленными организаторами, на процедуре апелляции, на олимпиаде ее назы-

_

¹ Есть еще два неофициальных, но широко распространенных на МХО языка – русский и испанский.

вают «арбитраж». Окончательная официальная оценка каждому участнику ставится только при обоюдном согласии сторон. Такая сложная процедура позволяет сделать систему оценивания открытой и демократичной.

Само соревнование — главная, но не единственная часть олимпиады. Мероприятие проходит 10 дней, из которых самому соревнованию посвящено только два. Остальное время у школьников занимает культурная программа — знакомство со страной, ее традициями и культурными ценностями, научными достижениями (менторы загружены работой существенно больше — они работают на результат, поэтому для них культурная программа находится на втором плане). Национальные особенности и достижения находят отражение даже в задачах олимпиады. Например, на московской олимпиаде 2007 года в подготовительном комплекте ряд задач был посвящен Периодическому закону и другим открытиям Д.И.Менделеева, а в основном теоретическом туре в одной из задач рассматривались колебательные реакции, которые стали знаменитыми благодаря открытиям российских химиков [1].

Большое значение на МХО придается церемониям открытия и закрытия, на которых присутствуют многие знаменитые люди, включая Нобелевских лауреатов. Так, в 2009 году в Кембридже в олимпиаде участвовал Гарри Крото — один из первооткрывателей фуллерена, а в 2012 году олимпиада в США проходила под патронажем Ахмеда Зевэйла — основателя фемтохимии. Таким образом, гуманитарная составляющая играет на МХО не менее важную роль, чем химическая.

4. Россия в МХО

Наша страна — Советский Союз, а затем Россия всегда играла значительную роль и пользовалась большим авторитетом в МХО. Команда России на МХО — один из фаворитов, и от нее всегда ждут больших достижений. Как правило, эти ожидания оправдываются. За последние 10 лет, с 2008 по 2017 гг., российские школьники на МХО завоевали 26 золотых медалей, 13 серебряных и 1 бронзовую (рис. 1). Были и уникальные достижения. Так, Алексей Зейфман из Вологды дважды подряд — в 2004 и 2005 годах — становился абсолютным победителем МХО, а Даниил Хохлов (сейчас — аспирант химического факультета МГУ и один из тренеров команды Москвы по химии) — единственный школьник в истории МХО, которому золотые медали вручали два Нобелевских лауреата — Гарри Крото (Англия) в 2009 и Риоджи Нойори (Япония) в 2010. Еще одна абсолютная победа была завоевана в июле 2017 года, в Тайланде, где Александр Жигалин (Москва) стал лучшим юным химиком мира. На счету наших школьников неоднократно были победы в экспериментальном и теоретическом турах, были по 4 золотые медали из 4-х, была и неофициальная командная победа — в 2014 году во Вьетнаме.

Рис. 1. Медали команды России на МХО-2009 (Кембридж) – три золотые и одна серебряная

Все эти достижения являются следствием фундаментальной системы научных олимпиад, созданной и бережно сохраняемой в нашей стране. Они также отражают высокую эффективность российской системы подготовки к МХО. О последней скажем более подробно. Лучшие юные химики России – победители и призеры финального этапа Всероссийской олимпиады по химии в течение года участвуют в двух учебно-тренировочных сборах – зимних и летних, которые длятся около двух недель. Зимние сборы не связаны с конкретной олимпиадой, они имеют общеобразовательный характер и предназначены только для поддержания научной формы. Напротив, на летних сборах идет жесткая тренировка конкретно к предстоящей олимпиаде, и завершаются они двумя отборочными олимпиадами – теоретической и экспериментальной, по результатам которых и формируется национальная команда России. Данные олимпиады по сложности зачастую превышают настоящую МХО – это гарантирует то, что в команду попадут только сильнейшие на данный момент юные химики, лучшие из лучших. Добавим, что всю систему подготовки к МХО организует Московский университет на базе своего химического факультета. Примечательно то, что в подготовке команды России участвуют не только профессора и научные сотрудники, но также студенты и аспиранты – бывшие победители и призеры МХО. Они передают российским юным химикам свой богатый опыт подготовки и участия в МХО, обеспечивая тем самым преемственность поколений в олимпиадной системе.

Россия играет важную роль и в организационной структуре МХО. Российский представитель почти всегда присутствует в Международном олимпийском комитете, который разрабатывает стратегию развития МХО. Кроме того, наша страна пять раз (больше всех) принимала у себя МХО. Дважды олимпиада проходила в Советском Союзе – в 1972 (Москва) и 1979 (Ленинград), и трижды в России – в 1996, 2007 и 2013 году, в Москве, на химическом факультете МГУ (рис. 2) [1], [2].

5

Рис. 2. Официальные лица на МХО-2007. а) Вице-премьер Д.А.Медведев приветствует российскую команду; б) Ректор МГУ В.А.Садовничий открывает олимпиаду

На МХО задачи составляет страна-организатор. Московская олимпиада 2007 года проходила под девизом: «Химия – искусство, наука, развлечение», который отражает многообразие химии, ее творческий характер и связь с другими науками и способами познания мира. Авторы задач – в основном, это были сотрудники Химического факультета МГУ – постарались показать все самое интересное, что есть в современной химии, предложить участникам по-настоящему творческие вопросы, поиск ответа на которые приносит большое интеллектуальное удовольствие. Школьники погружались в мир квантовых эффектов и колебательных реакций, исследовали нанокатализаторы и решали органические «угадайки», изучали геометрические структуры силикатов и анализировали молекулярные механизмы атеросклероза.

На МХО-2013 в Москве упор делался на высокий интеллект. Девиз олимпиады «Прими вызов, включи мозги» показывал, что задачи делаются для умных. На этой олимпиаде школьники решали проблемы фотосинтеза, оценивали опасность «клатратного ружья» — возможности плавления газовых гидратов с выделением метана в атмосферу, изучали возможности адсорбции на графене — монослое графита, анализировали превращения высокореакционных производных циклопропана и исследовали биохимию необычных одноклеточных организмов.

Следует отметить, что сотрудники химического факультета МГУ приняли самое активное участие в подготовке задач и проведении МХО-2015, главной ареной которой стал Бакинский филиал МГУ [3]. Также существенен вклад российского коллектива авторов в успех МХО-2016 в Тбилиси, комплект заданий для которой впервые готовил международный научный комитет, в который вошли представители России, Венгрии, Великобритании, США и Индии [4].

Специфику олимпиадных задач МХО мы обсудим ниже.

5. Методические аспекты и результаты МХО

Из написанного выше может сложиться впечатление, что на МХО все хорошо и безоблачно. Однако, это не совсем верно. Существует целый спектр проблем – политических, экономических, научных. Обсудим последние – они связаны, главным образом, с характером предлагаемых участникам задач.

Задачи современных международных олимпиад отличаются от заданий первых олимпиад примерно так же, как болиды «Формулы-1» от самокатов [5-7]. Например, в одной из задач самой первой олимпиады требовалось написать всего три уравнения реакций:

```
CrCl_3 + Br_2 + KOH \rightarrow

KNO_2 + KMnO_4 + H_2SO_4 \rightarrow

Cl_2 + Ca(OH)_2 \rightarrow
```

В наше время такие задачи считаются простыми даже для вступительных экзаменов.

Текст современных задач редко занимает меньше одной страницы, а с рисунками бывает, что и три. Только для того, чтобы внимательно прочитать весь комплект задач, требуется почти час. Все задачи исключительно политкорректны: а) в них учтены интересы слабо подготовленных школьников в виде почти тривиальных вопросов; б) для справедливости оценивания задачи разбиты на большое число мелких вопросов, и детально прописана процедура снятия баллов за ошибочные решения. Благодаря такой процедуре, получив совершенно неправильный, бессмысленный ответ на расчетную задачу, можно, тем не менее, заработать до 90% от максимального числа баллов. Неудивительно, что в таких условиях возрастает роль предварительной тренировки, а наибольшее число баллов получают не самые сообразительные, а самые надежные и трудолюбивые школьники — те, кто умеет быстро получать правильные ответы на простые вопросы. Все это стало напоминать наш ЕГЭ, но только намного более высокого уровня. Получается, что оценки на МХО ставятся не за красивые и интересные решения, а за соответствие ответов школьников тем ответам, которые предложили авторы задач — фактически, это «караоке» на химические темы.

В подходах к составлению задач выделяются две главные методологии, или «школы», которые можно условно назвать «западная» (европейская) и «восточная» (азиатская). Первая ориентирована на достаточно высокий уровень сложности и нестандартные подходы, она требует умения думать и придумывать, находить решения и совершать самостоятельные поступки. По способам решения и нахождения ответа это — почти наука в полном смысле слова. «Почти» — потому что на Олимпиаде все-таки решают задачи с известным ответом, а наука ищет решения и подходы, еще никому не известные.

Восточная школа во главу угла ставит точное исполнение и умение работать. Как правило, в таких задачах довольно много вопросов, но среди них мало оригинальных. Решая эти задачи, не узнаешь ничего нового, они просто проверяют умение быстро и качественно выполнять стандартные приемы. Такие задачи решать необходимо (для тренировки), но скучно, они дают результат, но не прибавляют интереса к химии. Если задачи западного типа — это познание и наука, то восточный тип — это технология и воспроизводство. Все сказанное в равной мере относится и к теоретическим, и к экспериментальным задачам. (Надо понимать, что эти утверждения, основанные на 15-летнем опыте, описывают только усредненную картину. В отдельных европейских олимпиадах бывало много примитивных вопросов, а в азиатских встречались прекрасные, умные задачи.)

Всероссийская олимпиада и близкая ей по уровню Международная Менделеевская олимпиада в теоретических турах содержат только задачи западного типа [8]. Это в полной мере отвечает российскому менталитету: нашему человеку намного проще решить одну сложную задачу, чем 100 легких. Именно поэтому российские школьники, прошедшие жесткий отбор сначала на Всероссийской олимпиаде, а затем на тренировочных сборах, хорошо решают сложные задачи и зачастую пасуют перед банальными вопросами. Более того, иногда они даже придают (подсознательно) стандартному вопросу творческую форму и решают задачу не в авторской формулировке, а в своей собственной, ими же выдуманной, что намного интереснее, но не приносит баллов. Получается, что многие наши школьники на олимпиа-

де как бы раздваиваются — подсознание требует удовольствия, а сознание — баллов, в мозгу на протяжении 5 часов постоянно происходит борьба между творчеством и стремлением к высокому результату. Но это — только на олимпиадах «восточного типа», как раз такой была олимпиада, прошедшая в Тайланде в 2017 году. Зачастую в этой борьбе мозг побеждает, и российские школьники тоже получают много баллов, все-таки класс у них очень высокий, но в целом на восточных олимпиадах заметное преимущество имеют страны Юго-Восточной Азии — Китай, Тайвань, Корея.

В помощь этим качественным рассуждениям можно привести статистические данные. Поскольку в «восточных» олимпиадах задания обычно весьма простые, участники набирают довольно много баллов, поэтому граница между золотыми и серебряными медалями лежит в районе 90 баллов (из 100 возможных). Это четко видно из таблицы 1: в западных олимпиадах граница между золотом и серебром намного ниже, чем в восточных, а разница между абсолютным победителем и последним из золотых медалистов составляет около 20 баллов, тогда как в восточных — меньше 10. На жаргоне, принятом в олимпиадной среде, говорят, что в Азии победителей «определяют по блохам», то есть по минимальным отличиям в решениях.

Таблица 1. Статистические данные о победителях МХО разных лет

Страна-организатор, год	Граница между золотой и серебряной медалями, в баллах	Результат абсолютного победителя, в баллах
Европа		
Германия, 2004	72.1	88.7
Россия, 2007	57.4	76.1
Венгрия, 2008	66.7	87.0
Россия, 2013	66.5	85.1
Азербайджан, 2015	62.2	84.4
Азия		
Тайвань, 2005	90.6	96.8
Япония, 2010	88.8	96.6
Вьетнам, 2014	72.8	85.1
Тайланд, 2017	неизв.	96.1

Рекордсменом по уровню задач была МХО 2007 года в Москве. Сотрудники и преподаватели Химического факультета Московского университета при поддержке коллег из других химических вузов и научно-исследовательских институтов предприняли все усилия, чтобы сделать олимпиаду по-настоящему творческой. Абсолютный победитель этой олимпиады набрал чуть больше 76 баллов — этого результата в Токио хватило бы только на то, чтобы занять 95-е место и получить бронзовую медаль. На рис. 3 четко видна разница в результатах золотых медалистов трех разных олимпиад.

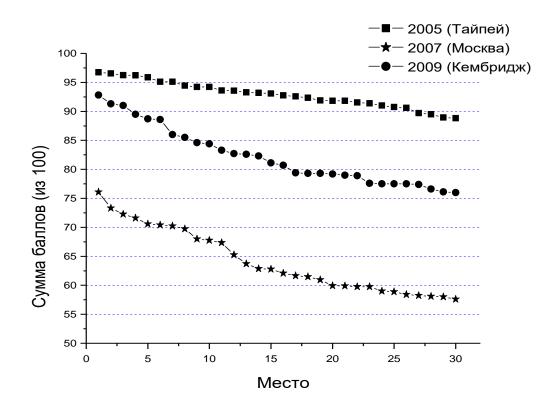


Рис. 3. Сравнение результатов 30 лучших школьников на олимпиадах 2005, 2007 и 2009 годов

Это была статистика по олимпиадам в целом. Другой тип данных характеризует конкретные задачи — это распределение участников по проценту выполнения данной задачи. В идеально составленной задаче это распределение должно иметь гауссову форму с пиком в районе 40-60%, а число школьников, которые решили задачу полностью или, напротив, не решили совсем ничего, должно быть очень мало [9]. Такая задача позволит не только проявить себя всем участникам, но и отличить по результату сильных школьников от менее подготовленных. В качестве примера приведем статистику решения «хорошей» задачи по аналитической химии на МХО-2007 (рис. 4.а).

В задачах, составленных менее аккуратно, без учета способностей школьников к решению, распределения бывают разные — они могут иметь несколько пиков в разных местах или один пик, но смещенный к началу или к концу шкалы баллов. В задачах восточного типа обычно пика вообще нет, а наблюдается постоянный рост от низких баллов к высоким (рис. 4.б). Такие задачи имеют плохую дискриминирующую силу, то есть не позволяют отличиться наиболее способным учащимся.

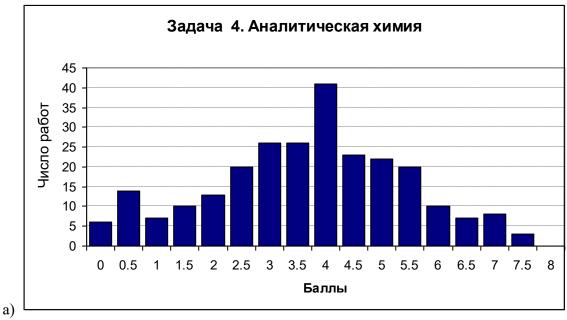


Рис. 4. Распределение работ по баллам в: (а) «хорошей» (Москва-2007) и (б) «плохой» (Токио-2010) задачах

Современные тенденции таковы, что по своему творческому уровню МХО становится все более и более примитивной. Задачи становятся все длиннее, скучнее и по форме напоминают подробную бюрократическую инструкцию, где расписан каждый шаг и не допускаются никакие отклонения от разработанного маршрута решения задачи. Это означает, что любой нестандартный способ решения, даже малый шаг в сторону от авторского замысла, зачастую весьма незатейливого, может быть наказан полным или частичным снятием баллов и потерей медали. На самом деле, это происходит из благих намерений — чтобы оценка за задачу была справедливой, и при этом честно оценивался каждый верный фрагмент решения. Но суть олимпиады как творческого конкурса при этом теряется!

Можно ли как-то повлиять на эту ситуацию? Со стороны жюри — нет, ведь там все решает большинство. Но можно со стороны организаторов олимпиады. В настоящее время преобладают задачи такого типа: вам дано то-то, сначала рассчитайте одно, потом сделайте другое, после этого перейдите туда-то и т.д., то есть весь ход решения расписан подробно. Надо предоставить участникам олимпиады гораздо больше самостоятельности в решении. Для этого достаточно сообщить исходную информацию (с избытком) и сказать, что именно требуется найти, то есть дать для решения начальную и конечную точку. А маршрут и прие-

мы решения участникам придется выбирать самим. Впервые задача такого типа была предложена в Кембридже в 2009 году на экспериментальном туре. Требовалось опытным путем определить критическую концентрацию мицеллообразования в растворе поверхностно-активного вещества, измерив электропроводность серии растворов. Сколько растворов должно быть в этой серии и как их готовить, учащиеся должны были решить сами.

На мой взгляд, именно за такими задачами — будущее химических олимпиад, не только международных. Пока они непривычны, трудны как для решения, так и для проверки, но очень и очень интересны. А это для будущих ученых — самое главное.

6. Роль МХО в системе химического образования

Более чем 40-летняя история мирового олимпиадного движения показывает, что МХО оказывает позитивное воздействие на мировую систему химического образования в целом. Она позволяет сравнить между собой различные образовательные системы и выбрать все лучшее, что есть в каждой из них. От страны-организаторы требуются довольно большие затраты, но взамен олимпиада способствует развитию общественного интереса к химическому и естественнонаучному образованию, роли химической науки и промышленности в жизни общества. Успешное выступление команды на МХО или успешная организация МХО укрепляют престиж страны в мировом образовательном пространстве. В подготовке к МХО участвуют различные химические организации, что стимулирует их научную и образовательную деятельность.

Участники олимпиады, помимо приумножения знаний во время подготовки к МХО, привлекают к себе внимание мирового химического сообщества, что способствует успешной научной карьере в будущем. Немаловажную роль играют и контакты между школьниками разных стран, которые завязываются на олимпиаде.

Здесь уместно проследить за научной судьбой победителей МХО прошлых лет. Практически все они поступают в университеты, где через некоторое время испытывают неизбежные психологические проблемы, связанные с переходом от олимпиадной к студенческой и научной жизни. Успех на олимпиадах не приводит автоматически к успеху в науке, это – разные подходы к химии. В олимпиадной жизни все просто – есть задача, у которой точно есть решение. В науке – по-другому: задачу надо придумывать, а есть ли у нее решение или нет, неизвестно. Те, кому удается быстро это понять, а таковых большинство, становятся хорошими молодыми учеными, защищают диссертации и продолжают затем трудиться в науке. Многие члены сборной России на МХО 2001-2007 годов уже стали кандидатами наук (химических или физико-математических), почти все они остались работать в России. При этом олимпиадная жизнь у них продолжается, но уже в качестве преподавателей. Так, на последней МХО-2017 все трое руководителей команды России – бывшие победители и призеры МХО (2002, 2003 и 2007). Таким образом, каждая международная олимпиада пополняет ряды будущих квалифицированных преподавателей химии в России.

7. Выводы

- 1. Международная химическая олимпиада (МХО) вершина мировой системы химических олимпиад. Она помогает усилить дружеские отношения среди молодых людей из разных стран, поощряет международное взаимодействие и понимание.
- 2. МХО создана социалистическими странами и за 49 лет своей истории превратилась в крупное и авторитетное мероприятие мирового масштаба.
- 3. МХО это сложное многоуровневое соревнование с четкими правилами, целями, задачами и стратегией развития. Организация и проведение МХО требуют совместных усилий крупных государственных структур и научно-образовательных центров высшего уровня.

- 4. Россия занимает одну из передовых позиций в МХО благодаря многолетнему успешному выступлению школьников и отличной организации олимпиад в 1996, 2007 и 2013 годах.
- 5. Творческое и научное содержание МХО испытывает некоторый кризис, связанный с излишней формализацией заданий. Требуются новые подходы.
- 6. МХО играет важную стимулирующую роль для национальных систем химического образования. Подготовка к МХО, участие в ней и, особенно, проведение МХО помогают готовить научные и педагогические кадры высшей квалификации.

8. Литература и интернет-ссылки

- 1. http://www.icho39.chem.msu.ru/ официальный сайт MXO-2007 (Москва).
- 2. http://www.icho2013.chem.msu.ru/en/ официальный сайт MXO-2013 (Москва).
- 3. http://icho2015.msu.az/ официальный сайт MXO-2015 (Баку).
- 4. http://www.icho2016.chemistry.ge/ официальный сайт МХО-2016 (Тбилиси).
- 5. Задачи Международных олимпиад по химии (под ред. В.В.Еремина). М.: Экзамен, 2004.
- 6. Химия. Международная олимпиада в Москве (сост. В.В.Лунин, В.В.Еремин, А.К.Гладилин). М.: Дрофа, 2011.
- 7. Полные тексты всех заданий МХО 1968-2013 с решениями на английском языке приведены в разделе «Справочные материалы» в нашем курсе.
- 8. А.К.Гладилин. Химические олимпиады высшего уровня: общее и различия. В сб. «Современные тенденции развития химического образования: работа с одаренными школьниками». М.: Изд-во Моск. ун-та, 2007, с. 38.
- 9. А.К.Гладилин. Науки о живом в химических олимпиадах: как составить интересную и решаемую задачу? В сборнике «Современные тенденции развития химического образования: фундаментальность и качество». М.: Изд-во Моск. ун-та, 2009, с. 130.

9. Вопросы для контроля

(В тестовых вопросах правильный ответ – единственный)

- 1. В какой стране прошла самая первая Международная химическая олимпиада?
- 1) CCCP
- 2) Китай
- 3) Чехословакия
- 4) США
- 5) Венгрия
- 2. Сколько туров включает международная олимпиада?
- 1) Один тур только теоретический
- 2) Два тура теоретический и экспериментальный
- 3) Два тура теоретический и проектный
- 4) Три тура теоретический обязательный, теоретический с выбором и экспериментальный
- 5) Три тура теоретический, экспериментальный и проектный
- 3. Сколько школьников входит в состав команды на МХО?
- 1) 2
- 2) 4
- 3) 5
- 4) 6

- 5) все победители национальной олимпиады
- 4. Ответьте на один из вопросов теоретического тура МХО-2017.

Пропен может быть синтезирован путем прямого дегидрирования пропана в присутствии катализатора. Увеличить выход пропена путем увеличения давления при постоянной температуре трудно. Какой принцип или закон может объяснить данный факт?

- 1) Закон Бойля
- 2) Закон Шарля
- 3) Закон Дальтона
- 4) Закон Рауля
- 5) Принцип Ле-Шателье
- 5 (Вопрос с фиксированным ответом). Решите маленький фрагмент одной из задач теоретического тура МХО-2017. В задаче требовалось определить содержание фосфатов (PO_4^{3-}) в почве.

Из образца почвы массой 5.00 г было получено 50.0 мл экстракта, в котором находится весь фосфор из данного образца почвы. Экстракт был исследован на общее содержание фосфора, которое составило 4.96 мг/л. Определите массу PO_4^{3-} в мг на 1000 г почвы. Ответ округлите до ближайшего целого числа и запишите это число в ответе (без указания размерности).

Правильные ответы:

- 1.3)
- (2, 2)
- 3. 2)
- 4. 5)
- 5. 152