Задача 9.

Разрежем и сошьём (11 баллов)

- **1.** (1 балл) Первая стадия «пробивает брешь» в симметричной молекуле фуллерена C_{60} , цепляя «застежку», которую можно при надобности «отцепить» обратно. Затем брешь в несколько стадий расширяется последовательным направленным окислительным раскрытием циклов, находящихся рядом с «дефектом», которое проходит с перегруппировками углеродного скелета. Окислительное «расстегивание» циклов в соединении **2** с образованием **3** и **4** можно повернуть вспять при действии восстановителя. Такой подход используют для введения во внутреннюю полость соединения **4** (**5**) молекул (атомов) гостя, с образованием эндоэдральных комплексов. Последующие превращения данных комплексов по Схеме 1 приводят к эндоэдральным комплексам фуллерена $\mathbf{M} \otimes \mathbf{C}_{60}$.
- **2. (2 балла)** Поскольку молекула воды примерно в 5 6 раз меньше, чем молекула толуола, то только вода проникает в эндоэдральную полость.

Вещества **4** и **5** существуют в водном растворе в обратимом равновесии, в то же время, у **4** размер отверстия больше, поэтому вода проникает во внутреннюю полость преимущественно соединения **4**.

3. (2 балла) У соединения $H_2O@C_{60}$ 2 изомера. У атома водорода спин может принимать 2 возможных значения +1/2 и -1/2, поэтому в молекулах, содержащих 2 атома водорода, возможны 2 комбинации спинов — сонаправленные и противонаправленные. Такие изомеры называются *спиновыми*.

Фуллереновая оболочка защищает и экранирует внутреннюю молекулу воды, тем самым значительно увеличивая расстояние (по сравнению с «незащищенными» молекулами H_2O), на которое к ней могут подойти внешние молекулы и частицы, способные вызвать конверсию спина (например, парамагнитные молекулы кислорода), что стабилизирует спиновые изомеры.

4. (**2 балла**) Сигнал воды в $H_2O@C_{60}$ сильно экранирован по сравнению с водой в растворителе. Это объясняется наличием сильных диамагнитных кольцевых токов, циркулирующих внутри частично делокализованных 6π -электронных ароматических систем (рис. 1), содержащихся в молекуле фуллерена. Протоны воды ведут себя как внутренние протоны канонического [18]-аннулена, находящиеся в зоне повышенного экранирования.

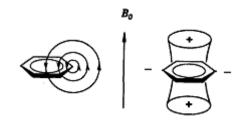


Рис. 1. Кольцевые токи в бензольном кольце и зоны увеличенного (+) и уменьшенного (-) экранирования.

- **5.** (2 балла) Очевидно, что не все атомы углерода эквивалентны по отношению к зафиксированной молекуле воды. Однако наличие всего одного синглета в спектре показывает, что, несмотря на это, для ЯМР все атомы углерода эквивалентны. Поэтому, можно предположить, что молекула воды быстро вращается внутри C_{60} . Чтобы это подтвердить, можно попробовать снять спектр при низких температурах, когда вращение воды будет заторможено.
- **6.** (**2 балла**) Триплет (рис. 2 условия) может получиться либо при наличии у атома водорода 2-х эквивалентных соседних протонов (3 спиновых комбинации: +1, 0, -1), либо одного дейтрона (+1, 0, -1). Отсутствие дополнительных сигналов в 1 H ЯМР, а также близость сигнала второго продукта к сигналу $H_2O@C_{60}$, позволяет сделать вывод, что это $HDO@C_{60}$.

Тогда жидкость \mathbf{X} – D_2O (или смесь обычной воды с тяжелой - H_2O -HDO- D_2O), $\mathbf{62}$ - HDO@ C_{60} (среди продуктов также будет $D_2O@C_{60}$ сигнал которого отсутствует в 1H ЯМР).