Программа элективного курса «Свет и оптика» (36 ч)

Пояснительная записка

В школьном курсе химии учащиеся изучают основы оптики, а также рассматривают вопрос о взаимодействии света с веществом. Однако современным устройствам генерации света и фундаментальным основам их работы, фотохромным, электрохромным и люминесцентным материалам, лазерам, источникам хранения информации в школьном курсе внимания не уделяется. Задача данного элективного курса и заключается в восполнении этого пробела. Обращение к англоязычным сайтам способствует развитию у школьников интереса к изучению иностранных языков.

Представленный элективный курс рассчитан на учащихся 11 классов, изучающих физику или химию на профильном уровне. Изучение курса проводится по дистанционной схеме и предполагает следующие формы обучения: лекции, семинары, лабораторные и практические работы (выполняемые на компьютере), контрольные и проверочные работы, включая итоговую работу (зачет). Лабораторные и практически работы предполагают выполнение компьютерного моделирования – составление виртуальных структур молекул и материалов, а также просмотр фото- и видео описаний опытов с последующей записью наблюдений и обсуждением результатов экспериментов (например, наблюдение хемилюминесценции в живой природе и в лаборатории, разделение смеси красителей, входящих в состав фломастеров, методом бумажной хроматографии). Итоговая работа должна включать в себя подготовку реферата по одной из тем курса. Реферат представляется учащимся в виде текстового файла и в виде презентации в роwerpoint.

Тема 1. Введение

Электромагнитная природа света. Спектральный состав света. Основные световые величины и единицы. Принципы и устройства генерации света — традиционные и современные источники освещения.

Тема 2. Люминесценция

Природа люминесценции. Виды люминесценции. Синглетные и триплетные уровни. Диаграмма Яблонского. Фотолюминесценция. Хемилюминесценция в живой и неживой природе. Фосфоресценция. Люминесцентные материалы. Светящиеся краски.

Тема 3. Изменения веществ под действием света

Фотохромизм. Фотохромные материалы и их использование в технике и быту (фотохромные очки). Фотоэффект. Фотохимические реакции. Принципы фотографии. Черно-белая фотография. Цветная фотография. Принцип действия множительной техники.

Тема 4. Окраска веществ

Физические основы цвета. Свет и цвет. Цветовая температура. Элементы цветоведения. Хромофоры. Ауксохромы. Пигменты и красители. Классификация красителей. Светофильтры. Хроматография как метод разделения смесей применительно к смесям красителей (бумажная хромотография чернил фломастеров). Иризация.

Тема 5. Свет и живые организмы.

Биологические принципы получения света (светлячки, глубоководные рыбы), влияние света на живые организмы.

Тема 6. Оптические материалы.

Оптоволокно. Нелинейно-оптические материалы. Оптические устройства отображения и хранения информации. Метаматериалы.

Примерное почасовое планирование (36 ч, из них 1 ч резервного времени)

Номер темы	Часы лекций	Часы	Часы	Часы	Всего
		семинаров	лабораторных	контрольных	
			работ	работ	
1. Введение	1	-	-	-	1
2. Люминесценция	4	4	2	-	10
3. Изменения веществ под	4	3	-	-	7
действием света					
4. Окраска веществ	4	2	1	-	7
5. Свет и живые	2	2	-	-	4
организмы					
6. Оптические материалы	3	2	-	1	6
	18	13	3	1	35

Литература

- 1. «Нанотехнологии. Азбука для всех». Сборник статей под редакцией Ю. Третьякова, М., Физматлит, 2007.
- 2. В.В. Еремин, А.А. Дроздов, Нанохимия и нанотехнологии, элективный курс для учащихся 10 11 классов, М., Дрофа, 2009
- 3. М. Рыбалкина, Нанотехнология для всех, М, 2005
- 4. Попов Γ . В., Спектроскопия и цвета тел в курсе физики средней школы. М: «Просвещение», 1971
- 5. Багданов К. Б. Физика в гостях у биолога М., Наука, 1986
- 6. Чандаева С. А., Физика и человек, М., «Аспект пресс», 1994.
- 7. А.А. Елисеев, А.В. Лукашин, Функциональные наноматериалы, М., Физматлит, 2010

Интернет-ресурсы

http://www.nanometer.ru/lectures.html?UP=221854 - лекции по теме курса
http://mrsec.wisc.edu/Edetc/ — «Исследование наномира»: образовательный сайт
университета штата Висконсин (США)

 $\underline{\text{http://www.nanorf.ru/}}$ - журнал «Российские нанотехнологии»

http://www.nanojournal.ru/ - Российский электронный наножурнал