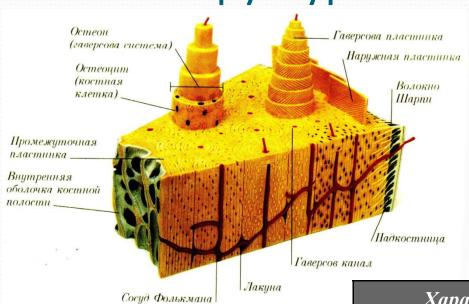
Нанотехнологии в медицине 1


Биорезорбируемые и биосовместимые материалы: протезирование костей

Области применения


Биоматериалы для лечения, восстановления и замены:

- кожных покровов
- кровеносной системы
- нервных волокон
- костной ткани
 - эндопротезы в травматологии и ортопедии
 - стоматология (пломбировочные материалы)
 - челюстно-лицевая хирургия
 - медико-косметические средства

Структура и свойства кости


Характеристики	ристики Направление испытаний по отношению к оси кости	
	" "	"⊥"
Прочность на растяжение, МПа	124 - 174	49
Прочность на сжатие, МПа	170 -193	133
Прочность на изгиб, МПа	160 ^a	11.5
Модуль Юнга, ГПа	17 - 27	
K_{1C} , $M\Pi a*m^{1/2}$	2 - 12 ^a	

Костная ткань

Состав костной ткани	вес %
Ca ²⁺	34.8
P	15.2
Са/Р (мольное)	1.71
Na ⁺	0.9
Mg^{2+}	0.72
K ⁺	0.03
CO_3^{2-}	7.4
F-	0.03
Cl-	0.13
$P_2O_7^{4-}$	0.07
Следы: Sr ²⁺ , Pb ²⁺ , Zn ²⁺ , Cu ²⁺ , F др.	e ³⁺ ,
Всего неорг.	65.0
Всего органич.	25.0
Вода	10.0
Размер кристаллов, Å	500 x 30

Пластинки ~ 100х10 нм, ось с $^{\perp}$ поверхности пластины

Иерархические уровни структурной организации кости

Основной состав кости: коллаген (20 вес.%), фосфаты кальция (69 вес.%) и вода (9 вес. %)

<u>Кроме того:</u> протеины, полисахариды и липиды

Фосфаты кальция в организме человека

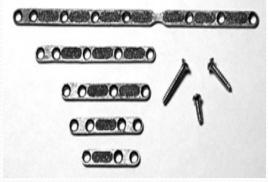
Формула		Присутствие
(Ca,Z) ₁₀ (PO ₄ ,Y) ₆ (OH,X) ₂	ГАП	эмаль, дентин, кость, зубной камень, мочевой камень, минерализация мягких тканей
Ca ₈ H ₂ (PO ₄) ₆ ·5H ₂ O	ОКФ	зубной и мочевой камень
CaHPO ₄ ·2H ₂ O	ДКФД	Зубной камень, хондрокальциноз, кристаллурия, разложение
(Ca,Mg) ₉ (PO ₄) ₆	ТКФ	зубной и мочевой камень, слюнный камень, ротовой кариес, суставной хрящь, минерализация мягких тканей
$(Ca,Mg)_{?}(PO_{4},Q)_{?}$	АФК	кальцинация мягких тканей
$\frac{(Ca,Mg)_{?}(PO_{4},Q)_{?}}{Ca_{2}P_{2}O_{7}\cdot 2H_{2}O}$	ПФК	жидкость синовиальных оболочек при подагре

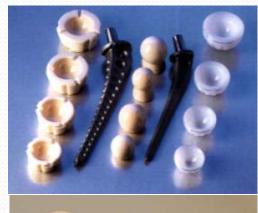
Поколения биоматериалов

1) Биотолерантные -

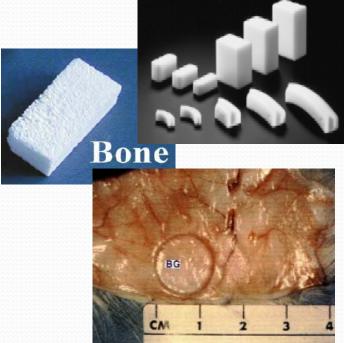
большинство металлов (стальной гвоздь)

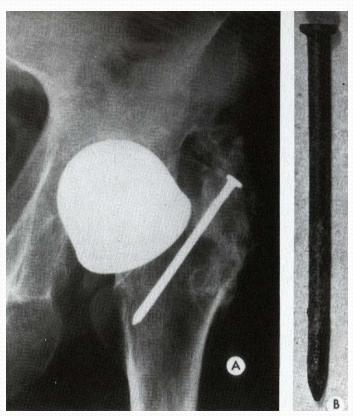
2) Биоинертные -

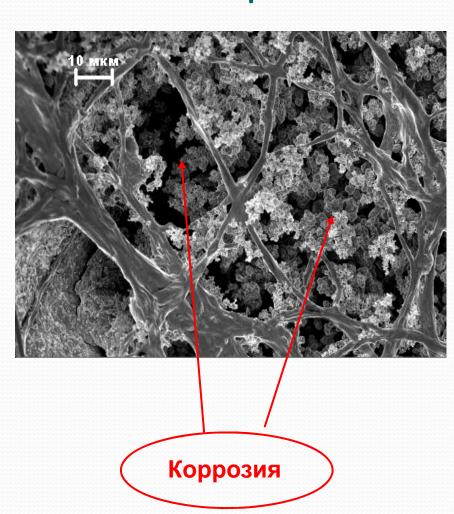

керамика на основе Al_2O_3 , ZrO_2 (стекло, полиуретановые губки)


3) Биоактивные -

композиционные материалы типа биополимер – фосфат


кальция





Коррозия металлических материалов

Изображение гвоздя, использованного для фиксации трещины тазобедренного сустава

Применение титана

Титановые и титансодержащие материалы для биомедицинского

применения

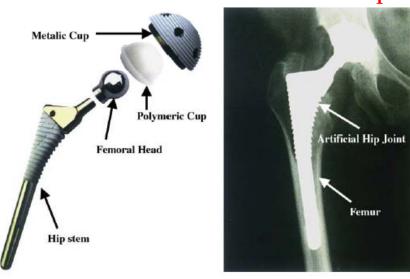
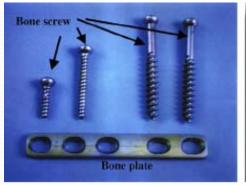
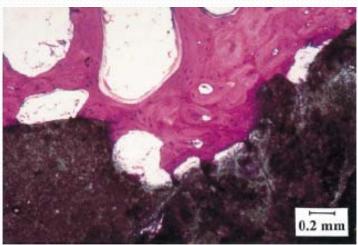
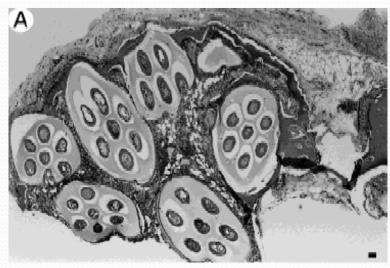



Fig. 2. Schematic diagram of artificial hip joint.

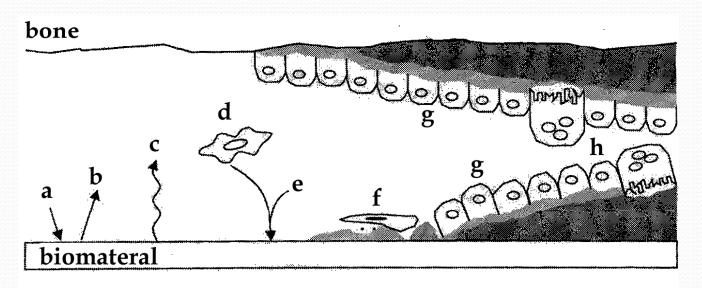


Fig. 6. Bone screw and bone plate [14].





Биокерамика на основе фосфатов кальция



Граница раздела биоматериала и ткани

- (а) адсорбция протеинов
- (b) десорбция протеинов
- (с) изменение поверхности и растворение (коррозия)
- (d) присоединение клеток: иммунных и соединительной ткани
- (e) направленный выброс матричных протеинов и селективная адсорбция BSP and OPN (сиалопротеинов и осеопонтина)
- (f) формирование lamina limitans и адгезия остеогенных клеток
- (g) формирование костной ткани на поверхностях
- (h) перестройка костной ткани

Специфика биоматериалов

- 1. Химические свойства (химический состав)
 - отсутствие нежелательных реакций между биоматериалом и окружающей тканью
 - контролируемая скорость резорбции
- 2. Механические свойства (микроструктура)
 - жесткость, прочность (E, σ_c)
 - трещиностойкость (K_{lc})
 - выносливость (n в $\lg(t/\tau) = -n\lg(\sigma/\sigma_c)$)
 - износостойкость
- 3. Биологические свойства (микроструктура, свойства поверхности)
 - биосовместимость (отсутствие любых нежелательных реакций со стороны иммунной системы)
 - прочный контакт (срастание) с костью
 - активация остеосинтеза

Резорбируемость и резистивность

- – К биорезорбируемым относятся материалы постепенно и полностью растворяющиеся в организме по мере нарастания новой кости.
- К биорезистивным относятся материалы с контролируемой поверхностной растворимостью для долговременной постоянной эксплуатации протеза, т.е. материалы, сопротивляющиеся растворению в средах организма.

Повышение биоактивности материалов

Химическая модификация:

- Снижение соотношение Са/Р
- Модификация порошков фосфата кальция ионами SiO_4^{4-} , CO_3^{2-} , SO_4^{2-} , Na^+ , K^+
- Замещение иона Ca²⁺ на ионы большего радиуса и/или меньшего заряда;
- Замещение иона PO_4^{3-} на SiO_4^{4-} , CO_3^{2-} , SO_4^{2-}

Фосфаты кальция (ФК)

сфат МКФМ сфат МКФ ат ДКФД ат ДКФ	(MCPM) (MCPA) (DCPD) (DCPA)	$Ca(H_2PO_4)_2 \cdot H_2O$ $Ca(H_2PO_4)_2$ $CaHPO_4 \cdot 2H_2O$ $CaHPO_4$	1.14 1.14 6.59
ат ДКФД	(DCPD)	CaHPO ₄ ·2H ₂ O	6.59
		-	
ат ДКФ	(DCPA)	CaHPO ₄	(00
			6.90
я ПФК	(PCP)	$Ca_2P_2O_7$	18.35
фат ОКФ	(OCP)	$Ca_8(H_2PO_4)_2(PO_4)_4 \cdot 5H_2O$	96.6
альция АФК	(ACP)	$Ca_3(PO_4)_2 \times H_2O$	-
сфат α- ТКФ	(α-TCP)	α -Ca ₃ (PO ₄) ₂	25.5
сфат β-ТКФ	(β-ТСР)	β -Ca ₃ (PO ₄) ₂	28.9
	(HAP)	$Ca_{10}(PO_{4})_{6}(OH)_{2}$	<u>117</u>
	(TTCP)	$Ca_4P_2O_9$	38-44
	сфат β-ТКФ	сфат β-ТКФ (β-ТСР) (HAP)	сфат β -ТКФ (β -ТСР) β -Са $_3$ (PO_4) $_2$ (HAP) Ca_{10} (PO_4) $_6$ (OH) $_2$

Повышения биоактивности материалов

Формирование заданной микроструктуры:

- Создание условий для формирования многофазного керамического материала, содержащего резорбируемые фазы
- Снижение размера зерен в керамическом материале
- Повышение пористости

Получение порошков ФК

Удаляемые сопутствующие продукты реакции:

$${}^{10}\text{Ca}(\text{NO}_3)_2 + 6(\text{NH}_4)_2 \text{HPO}_4 + 8\text{NH}_4 \text{OH} = \text{Ca}_{10}(\text{PO}_4)_6 (\text{OH})_2 + 20 \text{ NH}_4 \text{NO}_3 + 6\text{H}_2 \text{O} }$$

$${}^{10}\text{Ca}(\text{CH}_3 \text{COO})_2 + 6(\text{NH}_4)_2 \text{HPO}_4 + 8\text{NH}_4 \text{OH} = \\ \qquad \qquad = \text{Ca}_{10}(\text{PO}_4)_6 (\text{OH})_2 + 20 \text{NH}_4 \text{CH}_3 \text{COO} + 6\text{H}_2 \text{O} }$$

$${}^{10}\text{/}_n \text{C}_{12} \text{H}_{22-2n} \text{O}_{11} \text{Ca} + 6(\text{NH}_4)_2 \text{HPO}_4 + 2\text{H}_2 \text{O} = \text{Ca}_{10}(\text{PO}_4)_6 (\text{OH})_2 + 12 \text{NH}_3 + {}^{10}\text{/}_n \text{C}_{12} \text{H}_{22} \text{O}_{11} }$$

$$(\text{NH}_4)_2 \text{HPO}_4 + \text{CaX}_2 = \text{Ca} \text{HPO}_4 \cdot 2\text{H}_2 \text{O} + 2(\text{NH}_4) \text{X}, \text{ rge X} = \text{NO}_3^-, \text{Cl}^-, \text{CH}_3 \text{COO}^- }$$

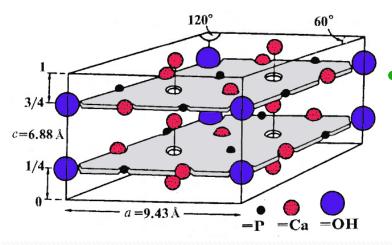
$${}^{2}\text{CaX}_2 + (\text{NH}_4)_4 \text{P}_2 \text{O}_7 = \text{Ca}_2 \text{P}_2 \text{O}_4 \cdot \text{ZH}_2 \text{O} + 4(\text{NH}_4) \text{X}, \text{ rge X} = \text{NO}_3^-, \text{Cl}^-, \text{CH}_3 \text{COO}^-, \text{a}$$

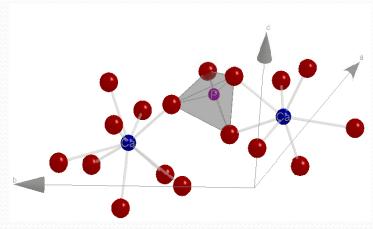
$${}^{2}\text{Ca} \text{Ca} \text{Ca}$$

Получение порошков ФК

Частично удаляемые сопутствующие продукты реакции:

- -уплотняющая добавка,
- -компонент, способствующий формированию новые фазы

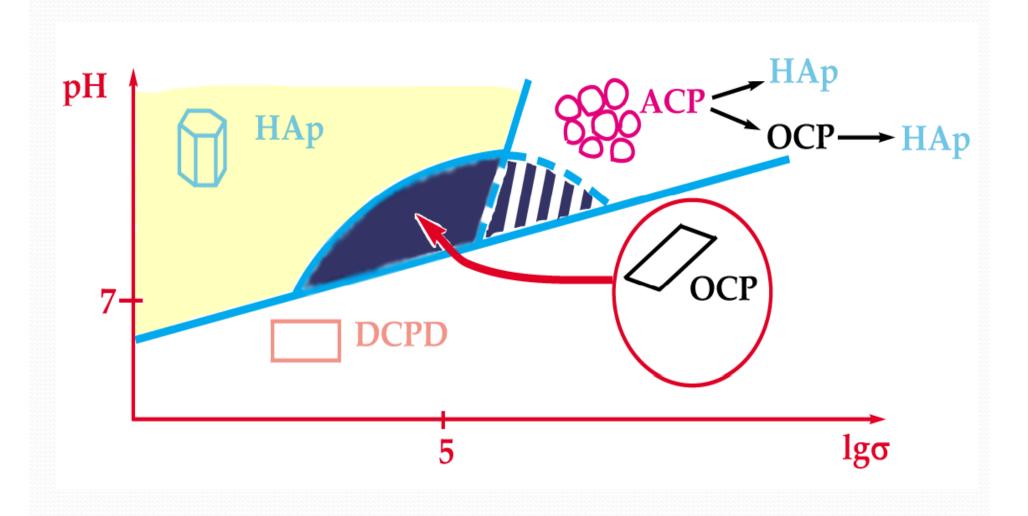

$$10Ca(CH_{3}COO)_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2}}{10Ca(CH_{3}COO)_{2} + 6Na_{2}HPO_{4} + 8NaOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2}}{10CaCl_{2} + 6Na_{2}HPO_{4} + 8NaOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20NaCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl + 6H_{2}O}{10CaCl_{2} + 6K_{2}HPO_{4} + 8KOH = \frac{\text{Ca}_{10}(PO_{4})_{6}(OH)_{2} + 20KCl_{4}OH}{10CaCl_{2} + 6K_{2}OH}{10CaCl_{2} + 6K_{2}OH$$


$$Na_2HPO_4 + CaX_2 = CaHPO_4 \cdot 2H_2O + 2NaX$$
, где $X = NO_3 \cdot , Cl \cdot , CH_3COO \cdot K_2HPO_4 + CaX_2 = CaHPO_4 \cdot 2H_2O + 2KX$, где $X = NO_3 \cdot , Cl \cdot , CH_3COO \cdot$

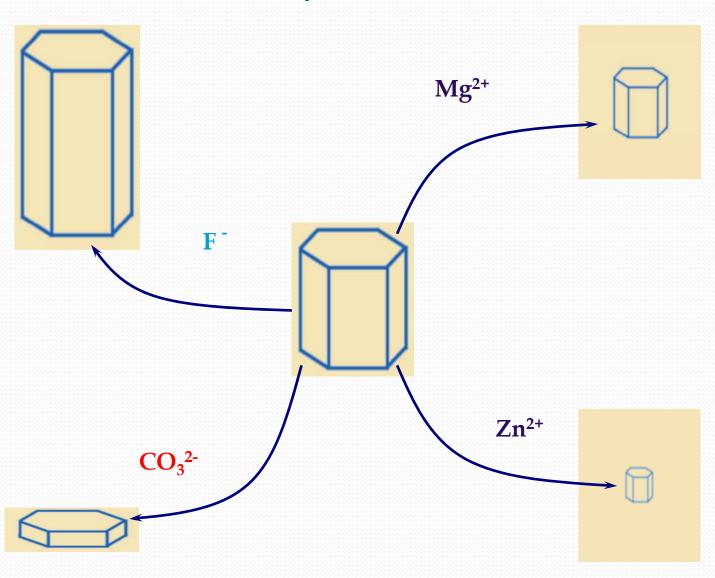
$$2CaX_2 + Na_4P_2O_7 = Ca_2P_2O_4 zH_2O + 4NaX$$
, где $X = NO_3^-$, Cl^- , CH_3COO^- , a $z = 2-4$ $2CaX_2 + K_4P_2O_7 = Ca_2P_2O_4 zH_2O + 4KX$, где $X = NO_3^-$, Cl^- , CH_3COO^- , a $z = 2-4$

Структурный типа апатита

Общая формула A₁₀X₆Y₂:


$$X = PO_4^{3-}, CO_3^{2-}, SiO_4^{4-}, VO_4^{3-}, AsO_4^{3-}...$$

Y= F⁻,CI⁻, OH⁻, O²⁻,S²⁻,
$$CO_3^{2-}$$
...


Факторы, влияющие на морфологию ФК

- условия синтеза (pH, σ, реагенты)
- присутствие примесей (F⁻, CO₃²⁻, Mg²⁺, Zn²⁺)
- поверхностная модификация (адсорбция различных неорганических и биоорганических частиц из раствора)

Влияние параметров синтеза

Влияние примесей ионов

Прочность на сжатие, МПа

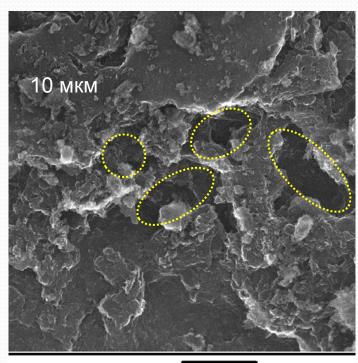
Трубчатая кость 90-210 MΠa Цемент (фосфатный) 5-50 МПа Керамика (фосфатная) 100-200МПа

Цементы

Кальций фосфатные костные цементы представляют собой смесь порошков различного состава:

```
CaHPO<sub>4</sub>·2H<sub>2</sub>O,

Ca<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub>O,


CaHPO<sub>4</sub>,

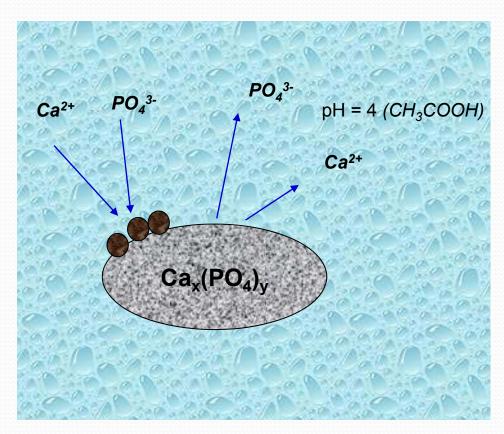
Ca<sub>8</sub>H<sub>2</sub>(PO<sub>4</sub>)<sub>6</sub>·5H<sub>2</sub>O,

Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O,

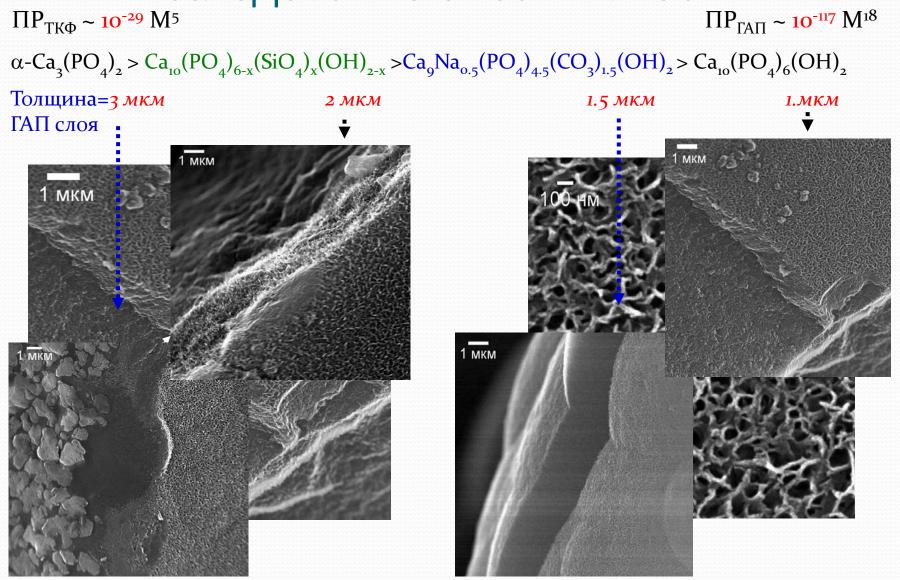
Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>
```

и воды (или растворов H₃PO₄, Na₂HPO₄).
Эта смесь превращается в ГАП даже при 37 °C в ходе "схватывания" (затвердения) цемента, формируя пористую массу.

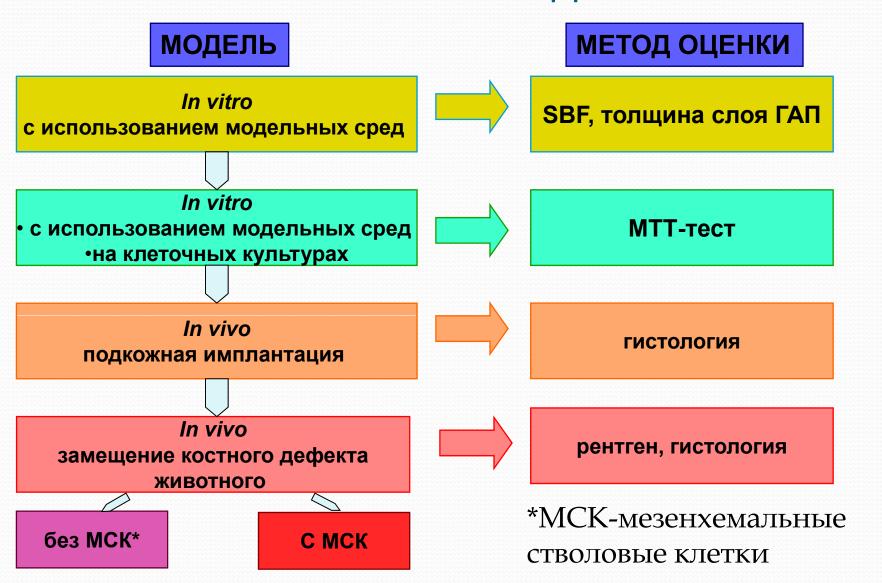
200kV x2500 10u Микроструктура цемента


Реакция цементирования кислотно-основная

(большинство фосфатов кальция) ${}_{2}\text{CaHPO}_{_{4}} + {}_{2}\text{Ca}_{_{4}}(\text{PO}_{_{4}})_{_{2}}\text{O} = \text{Ca}_{_{10}}(\text{PO}_{_{4}})_{_{6}}(\text{OH})_{_{2}}$ ДКФ ТетКФ ГАП


Исследование биологической активности

«Биологическая активность» - комплексная характеристика совместимых с организмом материалов, учитывающая, помимо биологических процессов роста и дифференциации клеток, также:


- (a) <u>скорость растворения</u> материала в слабокислой среде, создаваемой определенными группами клеток;
- (б) скорость осаждения фосфатов кальция из межтканевой жидкости организма на поверхности материала (образование контактной костной ткани между костью и имплантатом).

Исследование биоактивности

Клиничсекие исследования

