http://www.nanometer.ru/2009/03/01/12359311083166.html

Перечислить основные механические характеристики наноструктурных тонких пленок и покрытий. Описание модели сверхтвердой наноструктурной тонкой пленки.

К механическим характеристикам наноструктурных тонких пленок относятся: твердость H; эффективный модуль упругости $E^* = E/(1 - v^2)$ (где v -коэффициент Пуассона); упругая деформация разрушения H/E; сопротивление пластической деформации H^3/E^2 ; величина упругого восстановления W_e ; пластическая деформация W_p ;

Прямая зависимость в виде аппроксимирующих уравнений, связывающих W_p , H и H^3/E^2 , отсутствует. Существует лишь качественная связь - с ростом H и H^3/E^2 происходит уменьшение W_p . Причем пленки с твердостью более 25 ГПа имеют сравнительно низкие значения пластической деформации примерно 30%.

Суть модели сверхтвердой тонкой пленки состоит в том, что свободные от дислокаций нанокристаллы твердых фаз размером 3-10 нм окружены тонкой прослойкой аморфной фазы размером 1-2 нм. При этом предполагается, что поскольку в нанокристаллах и аморфной фазе отсутствует дислокационная активность, то такие пленки обладают высоким сопротивлением пластической деформации H^3/E^2 и высокой величиной упругого восстановления $W_{\rm e}$.

Какие известны механизмы локализованной деформации наноструктурных тонких пленок. В чем физический смысл данных механизмов?

Установлено два основных механизма локализованной деформации наноструктурных пленок: гомогенная и негомогенная с образованием ступенек сдвига. Оба механизма деформации осуществляются путем скольжения столбчатых элементов структуры — отдельных зерен или мультизеренных объемов материала - параллельно приложенной нагрузке. В случае слабой химической связи между соседними зернами отдельные элементы структуры при снятии нагрузки могут выталкиваться наружу в результате релаксации упругих напряжений. Негомогенный механизм деформации имеет кооперативную природу смещения столбчатых элементов структуры вследствие сильной энергии связи между зернами. Встречается также смешанный механизм деформации, когда наряду с кооперативным смещением столбчатых кристаллов также выделяются индивидуальные элементы колонной структуры.

Каковы основные причины пониженной жаростойкости (стойкости к высокотемпературному окислению) поликристаллических пленок и пленок с выраженной колонной структурой? Предложить эффективные пути увеличения жаростойкости покрытий.

Общие особенности покрытий с поликристаллической структурой- прямой доступ кислорода по механизму поверхностной реакционной диффузии по границам раздела зерен или колон к подложке. Это является основной причиной сравнительно низкой жаростойкости поликристаллических пленок и пленок с выраженной колонной структурой.

Эффективным путем увеличения жаростойкости является переход к наноструктурным пленкам путем подавления рекристаллизации нанокристаллов посредством создания плотной композиционной структуры, в которой кристаллиты находятся в аморфной матрице, содержащей элементы (Si, Al, Cr, B) с высоким химическим сродством к кислороду. Например, композиция Si_3N_4/MeN_x с высоким (более 50 ат.%) содержанием аморфной фазы $a-Si_3N_4$ удовлетворяют этим требованиям.

Пленки имеет высокую жаростойкость при 1000° С, при этом сохраняя высокую твердость 20-40 ГПа.

Позитивное влияние аморфизирующих элементов (Si, Al и B) на жаростойкость наноструктурных пленок в системах Ti-B-N, Ti-Si-B-N, Ti-Si-C-N, Ti-Al-C-N, Ti-C-В проявляется в следующем:

- увеличивается содержание аморфных фаз (a- Si_3N_4 , a-AlN, a-BN, a- B_4C);
- растет термическая стабильность наноструктурного состояния;
- на поверхности пленки образуется барьерная защитная оксидная пленка, препятствующая проникновению кислорода к подложке. Например, при температуре 800° C в наноструктурных пленках системы Ti-Al-C-N кислород растворяется в ГЦК решетке (Ti, Al)_{1-x}(C, N)_x. При температуре 1000° C алюминий диффундирует к поверхности пленки и образует защитный оксидный слой Al_2O_3 , препятствующий дальнейшему окислению.

Стойкость к высокотемпературному окислению возрастает в ряду Ti-B-N \rightarrow Ti-Si-B-N \rightarrow Ti-Cr-B-N \rightarrow Ti-Al-Si-B-N. Высокая жаростойкость пленок Ti-Cr-B-N и Ti-Al-Si-B-N обусловлена формированием защитных слоев на основе оксидов (Ti,Cr)BO₃ и Ti_xAl_vSiO_z.

Какова природа размерной зависимости прочности тонких пленок и пленочных многослойных гетероструктур. Почему границы зерен в поликристаллических образцах, дефекты упаковки в монокристаллических являются препятствием для скольжения дислокаций? Какая возможность имеется для реализации скольжения через границу зерен?

В тонких монокристаллических пленках дислокации локализуются в плоскостях скольжения и закреплены на обеих поверхностях, имея минимальную длину L. Напряжение течения кристалла $\tau = Gb/L$, где G — модуль сдвига, b — вектор Бюргерса дислокации. С учетом возможной развитости рельефа поверхности пленок следует ожидать локальные барьеры для скольжения дислокаций. Генерирование дислокаций зарождением с поверхности как действие источника Франка-Рида активируется при выполнении критерия: радиус дислокационной петли r = L/2. Этот критерий накладывает

ограничения на зарождение дислокаций с свободных поверхностей пленки ($r = \frac{Gb}{2\tau}$).

Прохождение дислокации через границу зерен, включая и границы двойников, запрещается инвариантностью вектора Бюргерса конкретной дислокации. По этой же причине и плоскость дефекта упаковки является преградой для скольжения дислокаций. Прохождение дислокаций «сквозь границу» возможно только посредством дислокационных реакций в границе. Например, дислокация с вектором Бюргерса $\vec{b} = \frac{1}{2} [10\,\overline{1}]$ первого зерна (ГЦК решетка) при взаимодействии с границей, близкой к

специальной с $\Sigma = 5$, может распадаться на $\vec{b_1} = \frac{1}{10}[310]$ и $\vec{b_2} = \frac{1}{10}[2\overline{1}\overline{5}]$. Взаимодействие

двух зернограничных дислокаций с соответствующими векторами Бюргерса может привести к испусканию границей во второе зерно дислокации с решеточным вектором Бюргерса.