На правах рукописи

ПОЛЕЖАЕВА ОЛЬГА СЕРГЕЕВНА

СИНТЕЗ НАНОКРИСТАЛЛИЧЕСКОГО ДИОКСИДА ЦЕРИЯ МЕТОДАМИ «МЯГКОЙ ХИМИИ» И ИЗУЧЕНИЕ ЕГО СТРУКТУРНО-ЧУВСТВИТЕЛЬНЫХ СВОЙСТВ

02.00.01 - неорганическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Москва - 2008 г.

Работа выполнена в Учреждении Российской Академии Наук Институте общей и неорганической химии им. Н.С. Курнакова РАН

Научный руководитель:	ведущий научный сотрудник, кандидат химических наук Иванов Владимир Константинович
Научный консультант:	академик Третьяков Юрий Дмитриевич
Официальные оппоненты:	доктор химических наук, профессор Губин Сергей Павлович кандидат химических наук Шляхтин Олег Александрович
Ведущая организация:	Российский химико-технологический университет им. Д.И. Менделеева

Защита диссертации состоится <u>26 ноября 2008</u> г. в <u>11 часов</u> на заседании Диссертационного Совета Д 002.021.01 в Учреждении Российской Академии Наук Институте общей и неорганической химии им. Н.С. Курнакова РАН по адресу: 119991, Москва, Ленинский проспект, 31, ИОНХ РАН

С диссертацией можно ознакомиться в библиотеке Института общей и неорганической химии им. Н.С. Курнакова РАН

Автореферат разослан 24 октября 2008 г.

Ученый секретарь Диссертационного совета, кандидат химических наук

Актуальность темы. Нанокристаллический диоксид церия является перспективным материалом, находящим широкое применение В промышленности. Диоксид высокотехнологических отраслях церия используется в защитных покрытиях, поглощающих УФ-излучение, в качестве основного компонента полирующих смесей, в сенсорах, электрохромных покрытиях и т.д. Дисперсный диоксид церия входит в состав трехмаршрутных катализаторов, применяется В реакциях селективного окисления, дегидрогенизации. В ряде работ отмечалась возможность использования нанокристаллического CeO_{2-x} в биомедицинских приложениях.

проявляемый в последнее десятилетие Значительный интерес, К церия, обусловлен изучению диоксида тем, что при переходе в нанокристаллическое состояние это соединение изменяет физико-химические свойства, причем характер этих изменений достаточно необычен. В частности, в отличие от целого ряда веществ, с уменьшением размеров частиц параметр элементарной ячейки СеО_{2-х} увеличивается. Одновременно с этим изменяется кислородная нестехиометрия диоксида церия вследствие увеличения доли атомов, находящихся на поверхности частиц. Это, в свою очередь, влечет за собой изменение электронных свойств нанодисперсного CeO_{2-x}; в частности, отмечается, что уменьшение размеров наночастиц CeO_{2-x} может приводить к смещению в коротковолновую область полосы поглощения в УФ-видимых спектрах диоксида церия. Необходимо подчеркнуть, что приводимые в литературе сведения о структуре и свойствах нанодисперсного CeO_{2-x} зачастую более противоречат друг другу; того, многие свойства. присущие нанокристаллическому CeO_{2-х}, до настоящего времени остаются практически неизученными.

К настоящему времени известно много способов получения диоксида церия, включая термическое разложение солей церия(III) и (IV), синтез в микроэмульсиях, пиролиз аэрозолей и другие, при этом размер получаемых наночастиц СеО_{2-х} варьируется от 2–3 до 50 нм. Наиболее интересными представляются методы, позволяющие синтезировать CeO_{2-x} с размером частиц менее 5-10 нм, поскольку именно в этом диапазоне становятся значимыми размерные эффекты. Следует отметить, что большинство перечисленных методов не позволяет получать наночастицы CeO_{2-x} заданного размера, либо включает использование дорогостоящих реагентов и оборудования, что практическому препятствует ИХ применению. Синтез функциональных наноматериалов на основе СеО_{2-х} осложняется и отсутствием информации о процессах, ведущих к образованию наночастиц диоксида церия. Таким образом, задачей становится разработка новых экономичных методов актуальной получения дисперсного диоксида церия С контролируемой мезо-И микроструктурой, основанных на детальном изучении механизмов и кинетики соответствующих физико-химических процессов.

В связи с этим, <u>целью настоящей работы</u> явилось исследование процессов формирования нанокристаллического диоксида церия при синтезе методами «мягкой химии», разработка новых методов получения нанопорошков CeO_{2-x} с контролируемой микроморфологией и исследование их функциональных свойств.

Научная новизна работы может быть сформулирована в виде следующих положений:

1. С применением *in situ* методов УФ-видимой спектроскопии и калориметрии теплового потока впервые исследованы механизм и кинетика образования нанокристаллического диоксида церия при осаждении раствором аммиака из водных и водно-спиртовых растворов нитрата церия(III) различной концентрации. Установлено влияние условий получения CeO_{2-x} на размер наночастиц, удельную поверхность, фрактальную размерность поверхности и распределение пор по размерам;

2. С применением ряда независимых методов определен механизм роста наночастиц CeO_{2-x} при высокотемпературном отжиге;

3. Впервые исследован механизм формирования нанодисперсного диоксида церия при синтезе методом гомогенного гидролиза нитрата церия(III) в присутствии гексаметилентетрамина (ГМТА). Установлено, что образование CeO_{2-х} происходит через промежуточную стадию формирования гидроксо-карбоната церия(III). Определены основные факторы (температура синтеза, концентрации исходных реагентов и др.), влияющие на динамику роста частиц CeO_{2-x}.

4. Впервые проведены сравнительные исследования влияния условий гидротермального (ГТ) и гидротермально-микроволнового (ГТМВ) синтеза температура, продолжительность) на микроморфологию (состав среды, наночастиц СеО_{2-х}. Предложен новый метод синтеза слабоагрегированных частиц СеО_{2-х}, основанный на ГТМВ обработке золей диоксида церия. Установлены оптимальные условия (температура, продолжительность) получения наностержней СеО_{2-х};

5. Получены высокоэффективные катализаторы на основе CeO_{2-x}, не содержащие благородных металлов, для глубокого и селективного окисления монооксида углерода в газовых смесях. Показано, что 99% конверсия CO в газовых смесях 4%CO/2.05%O₂/Не на катализаторах CuO/CeO_{2-x} может быть достигнута уже при 67°C. Установлено, что высокую эффективность в реакции селективного окисления CO демонстрируют катализаторы CuO/CeO_{2-x} с 5–10% содержанием меди;

6. Впервые проведены исследования биоактивности диоксида церия по отношению к бактериям *Escherichia coli*. Установлено, что ферментативная активность бактерий многократно повышается в присутствии нанопорошков

CeO_{2-х}. Показано, что биологическая активность диоксида церия определяется размером наночастиц и их концентрацией в суспензиях.

Практическая значимость:

– разработаны новые эффективные способы получения нанокристаллического диоксида церия с контролируемой микроморфологией (размер частиц – от 2 до ~20 нм, удельная поверхность – от 40 до 220 м²/г); в том числе новый метод синтеза слабоагрегированных порошков CeO_{2-x} с узким распределением по размерам, основанный на сочетании анионитной и гидротермально-микроволновой обработок;

 разработаны методы синтеза и получены опытные образцы высокоэффективных катализаторов глубокого и селективного окисления СО;

– показана перспективность применения нанокристаллического CeO_{2-x} в нанобиотехнологии.

На защиту выносятся:

1. Результаты исследований механизма и кинетики образования нанокристаллического диоксида церия из водных и водно-спиртовых растворов нитрата церия(III), анализ влияния условий получения на микроморфологию порошков CeO_{2-x}.

2. Результаты систематических исследований механизма роста наночастиц CeO_{2-х} при высокотемпературной обработке;

3. Результаты сравнительного анализа влияния условий гидротермального и гидротермально-микроволнового синтеза на микроморфологию наночастиц CeO_{2-x}.

4. Новый метод синтеза слабоагрегированных частиц CeO_{2-x} с узким распределением по размерам.

5. Метод получения и составы высокоэффективных катализаторов на основе CeO_{2-х} для глубокого и селективного окисления монооксида углерода.

6. Результаты исследований биологической активности нанокристаллического диоксида церия по отношению к бактериям *Escherichia coli* и влияния размерного фактора и концентрации суспензий диоксида церия на ферментативную активность бактерий.

Апробация работы. Основные результаты работы докладывались на следующих научных конференциях: XIII и XIV Международных молодежных научных конференциях «Ломоносов»; Conference on structural chemistry of partially ordered systems, nanoparticles and nanocomposites; VI Международном семинаре «Нелинейные процессы и проблемы самоорганизации в современном материаловедении»; VI Национальной конференции ПО применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов; Российской конференции С международным участием «Ионный перенос в органических и неорганических мембранах»; XVI International Conference on Chemical Thermodynamics in Russia; E-MRS 2007 Fall

Meeting; XVIII Менделеевском съезде по общей и прикладной химии; XLII Зимней школе ПИЯФ РАН, конференциях «Полифукциональные наноматериалы и нанотехнологии» и «Альтернативные источники химического сырья и топлива».

<u>Публикации.</u> Основное содержание работы опубликовано в 6 статьях и 14 тезисах докладов на всероссийских и международных конференциях. Работа выполнена в лаборатории химической синергетики Института общей и неорганической химии им. Н.С. Курнакова РАН при поддержке РФФИ (08-03-00471).

<u>Объем и структура работы.</u> Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, выводов и списка цитируемой литературы, включающего 228 наименований. Работа изложена на 187 страницах печатного текста и содержит 128 рисунков и 35 таблиц.

Личный вклад автора. Диссертантом выполнен весь объем синтетической части работы, обработка экспериментальных данных, анализ полученных результатов. В выполнении отдельных разделов работы принимали участие студенты ФНМ МГУ Н.В. Ярошинская и Д.О. Гиль, у которых автор являлся руководителем курсовых работ. Автор глубоко признателен академику Ю.Д. Третьякову за постоянное внимание и поддержку. Автор благодарит за помощь в проведении экспериментов И обсуждении результатов А.Е. Баранчикова, А.С. Ванецева, А.С. Шапорева (ИОНХ РАН), А.В. Гаршева (ФНМ МГУ), А.С. Лермонтова, М.С. Якимову (ИНХС РАН), Г.П. Копицу (ПИЯФ РАН), Г.Н. Федотова (РФЦСЭ МЮ РФ).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность темы диссертационной работы и сформулированы цель и задачи исследования, указаны основные методы и подходы, показана научная новизна и практическая значимость.

1. Обзор литературы

В обзоре литературы проведен анализ процессов получения нанокристаллического CeO_{2-x} методами «мягкой химии», рассмотрены преимущества недостатки отдельных методов. Подробно описаны И закономерности образования СеО_{2-х} в результате гомогенного гидролиза солей Се(III). Приведены данные о формировании и росте наночастиц СеО_{2-х} в гидротермальных и гидротермально-микроволновых условиях. Отдельный раздел посвящен анализу влияния размерного фактора на физико-химические свойства СеО_{2-х}. В заключении обобщены сведения о наиболее перспективных областях применения СеО_{2-х}.

2. Экспериментальная часть

2.1. Приготовление исходных реагентов

В качестве исходных использовали водные и водно-спиртовые растворы $Ce(NO_3)_3$ (х.ч.) (0.005–0.80M), NaOH (х.ч.) (2.5–5M), (NH₂)₂CO (ч.д.а.) (0.05–0.40M), гексаметилентетрамина (ч.д.а.) (0.022–0.30M), (NH₄)₂[Ce(NO₃)₆] (ч.д.а.) (0.40M), NH₄OH (ч.д.а.) (3M), а также суспензии $CeO_2 \cdot nH_2O$ в насыщенном растворе NaOH (х.ч.). Для приготовления нанесенных катализаторов на основе CeO_{2-x} использовали водные растворы HAuCl₄, Ni(NO₃)₂ (ч.д.а.), Co(NO₃)₂ (ч.д.а.), Fe(NO₃)₃ (ч.д.а.), Cu(NO₃)₂ (ч.д.а.).

2.2. Методы синтеза

Для получения исходных образцов нанодисперсного диоксида церия применяли описанные ниже методы быстрого и гомогенного гидролиза.

Метод быстрого гидролиза основывался на осаждении CeO_{2-x} из водных и (EtOH *i*-PrOH) растворов $Ce(NO_3)_3$ (0.02–0,80M) водно-спиртовых И (соотношение вода:спирт – 1:1–1:19) при добавлении к ним водного раствора аммиака (3М). Гомогенный гидролиз растворов гексанитратоцерата(IV) аммония присутствии карбамида проводили при кипячении в лабораторной в микроволновой печи Linn HighTherm. Гомогенный гидролиз нитрата церия(III) в присутствии ГМТА проводили в термостатируемой ячейке при перемешивании (1000 об/мин). Исходные реагенты смешивали в мольных соотношениях 1:3-1:40 и нагревали до 30-90°С. Ряд экспериментов проводили в условиях мощного ультразвукового воздействия. Условия синтеза образцов приведены ниже (см. табл.1-5).

Катализаторы на основе CeO_{2-x} были получены методом пропитки порошка Ce1-50%-T60-t2 (m = 1 г) растворами солей Ni(NO₃)₂, Co(NO₃)₂, Fe(NO₃)₃, Cu(NO₃)₂, HAuCl₄, концентрация которых была выбрана таким образом, чтобы массовое содержание нанесенного металла составляло 5% (3% для Au). Все образцы отжигали при температуре 400°C в течение 1 ч.

			00(1103)3.
Условные обозначения	Содержание спирта в	Т сушки,	Продолжительность,
образцов	исходных растворах,	°C	Ч
	об. %		
Ce1-0%-T60-t2	0 ¹	60	2
Ce1-50%-T60-t2	50 ¹	60	2
Ce1-65%-T60-t2	65 ¹	60	2
Ce1-75%-T60-t2	75 ¹	60	2
Ce1-85%-T60-t2	85 ¹	60	2
Ce1-95%-T60-t2	95 ¹	60	2
Ce1-50%-T60-t2	50 ²	60	2

Таблица 1. Условия осаждения CeO_{2-х} из водных и водно-спиртовых растворов Ce(NO₂)₂

¹ *изо*пропиловый спирт; ² этиловый спирт.

			1 Z X
Условные обозначения	Концентрация	Мольное соотношение	Т
ofnasion	раствора соли	Се(NO ₃) ₃ :ГМТА ИЛИ	синтеза,
ооразцов	церия, моль/л	(NH ₄) ₂ [Ce(NO ₃) ₆]:(NH ₂) ₂ CO	С°
Ce3-0.032M-0.022M-T60-t2	0.032 ¹	1:3	60
Ce3-0.032M-0.075M-T30(40,	0.032 ¹	1:10	30, 40,
50, 60, 70, 90)-t2			50, 60, 90
Ce3-0.032M-0.015M-T60-t2	0.032 ¹	1:20	60
Ce3-0.032M-0.3M-T60-t2	0.032 ¹	1:40	60
Ce3-0.1M-0.15M-T60-t120	0.10 ¹	1:6,8	60
Ce3-0.08M-0.15M-T60-t120	0.08 ¹	1:8,4	60
Ce3-0.06M-0.15M-T60-t120	0.06 ¹	1:11,3	60
Ce4-0.4M-0.8M-T60-t30	0.40 ²	1:2	100
Ce4-0.15M-0.8M-T60-t30	0.15 ²	1:2	100
Ce4-0.05M-0.8M-T60-t30	0.05 ²	1:2	100

Таблица 2. Условия проведения гомогенного осаждения образцов СеО_{2-х}.

¹Нитрат церия(III) + ГМТА; ² гексанитратоцерат(IV) аммония + карбамид.

Таблица 3. Условия проведения ГТ и ГТМВ синтезов образцов CeO_{2-х}.

Условные обозначения образцов	Температура ГТ	Продолжитель-
	(ГТМВ) обработки, °С	ность, ч
Ce2-FT-120-t2 (t3, t6) ¹ , Ce2-FTMB-120-t2 (t3, t6) ¹ ,	120	2, 3, 6, 24
Ce2-FT-120-t2 (t6, t24) ² , Ce2-FTMB-120-t2 (t3, t6) ²		
Ce2-ГТ-150-t3 ¹ , Ce2-ГТМВ-150-t3 ¹ ,	150	3, 6
Ce2-FTMB-150-t2 (t3, t6) ²		
Ce2-FT-180-t2 (t3, t6) ¹ , Ce2-FTMB-180-t2 (t3,t6) ¹ ,	180	2, 3, 6
Ce2-FTMB-180-t2 (t3, t6) ²		
Ce2-ГТ-210-t3 ¹ , Ce2-ГТМВ-210-t3 ¹	210	3
Ce2-FTMB-230-t3 ²	230	3
$\frac{1}{2}$		

Обработка в нейтральных средах; ² Обработка в щелочных средах.

Таблица 4. Условия ГТМВ обработки золей СеО _{2-х}			
Условные обозначения образцов	рН исходного золя СеО₂	Температура ГТМВ обработки, °С	Продолжительность обработки, ч
An-pH8.8-FTMB-T120-t3, An-pH8.8-FTMB-T180-t3	8.8	120, 180	3
An-pH10-ITMB-T120-t3, An-pH10-ITMB-T120-t3	10	120, 180	3

Таблица 5. Условия проведения высокотемпературных отжигов образцов CeO_{2-x}.

Исходный образец	Температура отжига, °С	Продолжительность отжига, ч
Ce1-50%-T60-t2	200, 300	2
———	400, 500, 600, 700, 800	2, 4, 6, 8
Ce1-75%-T60-t2	200, 300, 400, 500, 600, 700, 800	2
Ce1-95%-T60-t2	200, 300, 400, 500, 600, 700, 800	2
Ce4-0.05M-0.8M-T60-t30	400, 500	2
Ce4-0.15M-0.8M-T60-t30	300, 400, 500, 700	2
Ce4-0.4M-0.8M-T60-t30	300, 400, 500, 700	2

Гидротермальный синтез (в интервале температур 120-230°С) образцов CeO_{2-х} проводили в стальном автоклаве объемом 100 мл. Степень заполнения автоклава – 50%. Гидротермально-микроволновую обработку проводили в установке Berghof Speedwave MWS-3* в тефлоновых автоклавах. Высокотемпературные отжиги проводили в муфельной печи СНОЛ 10/11-В при температурах 200–800°С в течение 5 мин–8 ч.

2.3. Основные физико-химические методы анализа образцов

Спектры поглощения в УФ-видимой области суспензий СеО_{2-х} в диапазоне до 1010 нм волн от 190 регистрировали с использованием длин спектрофотометра СФ-2000. Рентгенофазовый анализ (РФА) проводили с использованием дифрактометра «Rigaku D/MAX 2500» (СиК_а-излучение). Рентгенографический метод (РГА) использовали для определения размеров областей когерентного рассеяния (ОКР) по формуле Шерера. Аппроксимацию дифракционных максимумов осуществляли с использованием функции Лоренца. Просвечивающая электронная микроскопия (ПЭМ) и электронная дифракция (ЭД) выполнены на электронном микроскопе Leo912 AB Omega при ускоряющем напряжении 100 кВ и микроскопе JEM 2100 JEOL. Анализ методом рентгеновской фотоэлектронной спектроскопии образцов осуществляли с помощью рентгеновского фотоэлектронного спектрометра PHI 5500 ESCA Perkin Elmer (Al К_а-излучение). *pH-метрические измерения* проводили с использованием pH-метра Crison GLP 22 с электродом Crison 5201, обеспечивающего точность измерений ±0.003 рН. Термический анализ (ТГА, ДТА) проводили с использованием термоанализатора Pyris Diamond TG7 (Perkin Elmer) в политермическом режиме на воздухе. Анализ состава газообразных продуктов термолиза проводили на термоанализаторе TG 209F1 Iris (Netzch), совмещенном с масс-спектрометром QMS 403C Aeolos (Netzch), в токе аргона. Величины удельной площади поверхности определяли методом низкотемпературной адсорбции азота (анализатор QuantaChrome Nova 4200В). Анализ распределения частиц по размерам в золях диоксида церия проводили методом динамического светорассеяния с помощью лазерного Malvern Zetasizer Nano ZS. анализатора Процессы образования нанокристаллического диоксида церия при осаждении из водно-спиртовых растворов нитрата церия(III) исследовали методом калориметрии теплового потока с использованием комплекса Setaram C-80. Эксперименты по малоугловому рассеянию нейтронов (МУРН) проводили на установке SANS-1 (реактор FRG1, GKSS Research Centre, Germany).

Исследования каталитической активности синтезируемых образцов проводили с использованием каталитической установки проточного типа. Состав газовой смеси в процессе окисления монооксида углерода определяли с помощью газового хроматографа CHROM 5. Для определения малых CO детектор концентраций использовался электрохимический ISP. позволяющий определять содержание в газовых смесях СО в концентрациях от 1 до 2000 миллионных долей. В процессе селективного окисления монооксида углерода контроль за изменением состава газовой смеси осуществляли хроматографическим методом на хроматографе «ЦВЕТ». Точность анализа – до 100 миллионных долей.

Для анализа <u>биологической активности</u> нанопорошков диоксида церия применяли люминесцентный тест, основанный на ингибировании люминесценции бактерий генно-инженерного штамма *Escherichia coli* TG1 (сенсор Эколюм-9). Измерения интенсивности биолюминесценции проводили с использованием люминометра Биотокс-М.

<u>3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ</u>

Для получения нанодисперсных неорганических материалов наиболее часто используют методы «мягкой химии», основанные на синтезе из водных и неводных растворов при относительно невысоких температурах. Механизм формирования наночастиц в этих условиях является достаточно сложным с физико-химической точки зрения и может включать процессы гомогенного гидролиза, образования и трансформации гетерофаз, закономерности протекания которых зачастую слабо изучены; это утверждение в полной мере относится и к процессам образования нанодисперсного CeO_{2-x}. В связи с этим, одной из ключевых задач настоящей работы стало изучение механизма и динамики процессов, протекающих при синтезе диоксида церия методами «мягкой химии» с целью получения нанопорошков CeO_{2-x} с контролируемой микроморфологией.

3.1. Формирование нанокристаллического диоксида церия при быстром осаждении из водно-спиртовых растворов нитрата церия(III)

В связи с тем, что растворимость диоксида церия в воде крайне мала, осаждение этого соединения при подщелачивании растворов солей церия(III) и церия(IV) протекает в условиях значительного пересыщения, что осложняет варьирование микроморфологии СеО_{2-х}. Тем не менее, как будет показано ниже, изменение состава исходных растворов способно приводить к изменению как размеров наночастиц, так И агрегатной структуры нанопорошков.

По данным *in situ* калориметрии теплового потока (рис. 1), образование CeO_{2-x} при смешении водно-изопропанольных растворов Ce(NO₃)₃ и водного раствора аммиака сопровождается значительным тепловым эффектом, величина которого (-73.2±0.2 кДж/моль CeO_{2-x}) практически не зависит от температуры. Характер кривых тепловыделения свидетельствует о том, что формирование CeO_{2-x} протекает с самоускорением. Таким образом, динамика данного процесса в целом аналогична наблюдаемой при синтезе ряда других оксидов металлов (TiO₂, ZnO и др.).

Рис. 1. Кривые скорости тепловыделения, полученные в изотермическом режиме при осаждении CeO_{2-х} из водно-изопропанольного (1:3) раствора Ce(NO₃)₃.

По данным in situ УФ-видимой спектроскопии, полоса поглощения СеО_{2-х} появляется непосредственно после смешения исходных растворов; выдерживания суспензий ПО мере CeO_{2-x} наблюдается закономерное смещение края полосы поглощения в область бо́льших длин волн. соответствующее уменьшению ширины запрещенной зоны (Ешзз) от 3.35 до 3.15-3.20 эВ (рис. 2). Начальные величины Ешзз характерны для наночастиц СеО_{2-х} диаметром 5.5-6 нм, а конечные совпадают с шириной запрещенной

зоны крупнокристаллического CeO_{2-x}. В связи с тем, что данные калориметрии свидетельствуют об автокаталитическом характере процесса, можно предположить, что при старении суспензий в маточном растворе происходит дегидратация гидроксокомплексов Ce(IV) преимущественно на поверхности сформировавшихся частиц CeO_{2-x}, сопровождающаяся увеличением их размеров.

$$Ce(OH)_{3} \xrightarrow{H_{2}O,O_{2}} [(Ce^{III},Ce^{IV})O_{y}(OH)_{z}] \xrightarrow{H_{2}O,O_{2}} CeO_{2-x} \cdot nH_{2}O$$
(III.1.2)

Рис. 2. Зависимость ШЗЗ CeO_{2-x} от продолжительности синтеза для растворов с различным соотношением H₂O/*i*-PrOH (1 – 1:1, 2 – 1:3, 3 – 1:6, 4 – 1:19).

По PΦA, данным полученные образцы представляют собой однофазный диоксид церия С кристаллической структурой флюорита. Изменение соотношения спирт/вода в исходных растворах не сказывается на размерах получаемых наночастиц CeO_{2-x}. Этот вывод подтверждается результатами ПЭМ, согласно которым образцы состоят из практически монодисперсных частиц размером 4-5 нм. В свою очередь, изменение концентрации нитрата

церия(III) от 0.02 до 0.8М приводит к росту размеров ОКР СеО_{2-х} от ~3 до 13 нм (см. рис. 3), хорошо согласующемуся с данными ПЭМ. По данным ТГА и ТГА/МС, образцы содержат сорбированную и химически связанную воду, удаляющуюся 50-200 200–1000°C, соответственно. при И также а хемисорбированные нитрат-ионы И ионы аммония, удаляющиеся преимущественно при 200-400°С. Суммарная потеря массы практически не зависит от соотношения спирт/вода в исходных растворах, однако увеличивается при уменьшении размеров частиц CeO_{2-x}. Таким образом, гидроксилированность поверхности наночастиц определяется размерным фактором.

Согласно адсорбционным данным, полученные образцы характеризуются пористостью 0.10–0.40 см³/г, при этом наибольший вклад в указанную величину дают микро- и мезопоры размером до 5 нм. Удельная поверхность материалов определяется составом растворов; так, например, для образцов, синтезированных из растворов, с 50, 75, 86 и 95% изопропанола, S_{va} составляет 220, 133, 124 и 110 м²/г, соответственно. Установлено, что в диапазоне размеров от 0.2 до 3.5 нм поверхность образцов СеО_{2-х} является фрактальной. Можно предположить, что фрактальные структуры образуются вследствие мономеркластер-кластерной агрегации кластерной наночастиц. Данное или размерности предположение подтверждается зависимостью фрактальной поверхности (D) от содержания изопропанола в растворах (см. рис. 4).

Рис. 3. Зависимость величины D_{OKP} CeO_{2-x} от концентрации Ce(NO₃)₃ при синтезе из растворов с различным соотношением *i*-PrOH/H₂O.

Рис. 4. Зависимость удельной поверхности и фрактальной размерности поверхности СеО_{2-х} от содержания *i*-PrOH в исходных растворах.

3.2. Механизм роста наночастиц диоксида церия при высокотемпературной обработке

Материалы на основе диоксида церия зачастую применяют при достаточно высоких температурах (до 600–800°С), поскольку в этих условиях существенно увеличивается диффузионная подвижность кислорода. В свою очередь, подвижность катионов церия в этом температурном интервале очень мала. Тем не менее, эксплуатация наноматериалов на основе CeO_{2-x} при высоких температурах неизбежно сопровождается ростом частиц и уменьшением удельной площади поверхности. Можно предположить, что эти изменения обусловливаются кооперативными процессами переноса массы вследствие взаимного перемещения кристаллитов CeO_{2-x}. Подобный механизм уплотнения ранее наблюдался экспериментально при изучении усадки т.н. «активных» порошков металлов [1].

Согласно данным РФА, отжиг образцов, полученных методом быстрого и гомогенного гидролиза, в течение 2 ч при 300–700°С, приводит к закономерному

росту размеров ОКР от 3-4 до 22-24 нм и от 4-5 до 19-20 нм, соответственно (см. рис. 5). Результаты измерений размеров ОКР для образцов СеО_{2-х} с различной предысторией, подвергавшихся отжигу при фиксированных температурах, свидетельствует о том, что в исследованном температурном интервале размер частиц в пределах погрешности измерений не зависит от времени (см. рис. 6). Дополнительные эксперименты по кратковременным термической обработке нанопорошков CeO_{2-х} при 700°C показали (рис. 7), что рост частиц происходит с наибольшей скоростью в течение первых 10 минут, после чего размеры ОКР меняются в существенно меньшей степени. Значение 2.2·10⁻¹⁵ составило cm^2/c . кажущегося коэффициента диффузии что существенно превосходит характерные значения коэффициентов зернограничной диффузии.

Рис. 5. Зависимость размеров частиц CeO_{2-x} с различной предысторией от температуры отжига.

Рис. 6. Зависимость размеров ОКР от температуры и продолжительности отжига для образца Ce1-50%-T60-t2.

Наблюдаемое постоянство размеров ОКР при фиксированных температурах отличается от классического диффузионного роста частиц. Можно предположить, что пороговая зависимость размера наночастиц от температуры обусловлена в первую очередь агрегацией формирующихся в ходе синтеза нанокристаллитов CeO_{2-x} с образованием спектра высоко- и малоугловых границ. При относительно низких температурах происходит разворот и сращивание частиц с наименьшей взаимной разориентацией; при дальнейшем повышении температуры начинается взаимное перемещение и сращивание более разориентированных кристаллитов и т.д.

Как было указано выше, варьирование методик синтеза нанокристаллического CeO_{2-х} приводит к получению образцов с существенно различающимися характеристиками поверхности.

Рис. 7. Зависимость размеров ОКР CeO_{2-х} от продолжительности изотермического отжига при 700°С.

Можно предположить, что поведение таких образцов при высоких температурах будет также различаться. Для проверки данного предположения были проведены изотермические отжиги образцов Се1-50%-T60-t2 и Ce1-75%-T60-t2. Полученные зависимости S_{уд} от T отжига показаны на рис. 8. С учетом того, что исходный размер частиц был одинаковым, можно сделать вывод о том, что динамика уменьшение удельной поверхности в значительной сте-

пени определяется характером агрегации частиц. Действительно, согласно адсорбционным данным, образец Ce1-50%-T60-t2 содержит существенно большее количество пор малого размера; данный факт свидетельствует о большем вкладе малоугловых границ между зернами CeO_{2-x} в общую пористость образца. Анализ по методу Неймарка-Киселева свидетельствует о том, что образец Ce1-50%-T60-t2, характеризуется большей фрактальной размерностью поверхности. Это, в свою очередь, также свидетельствует о малоугловых контактов в общую пористость. большем вкладе Анализ зависимостей дифференциального объема пор от температуры отжига показал, что при термической обработке в первую очередь наблюдается исчезновение малых пор (менее 0,25 нм), т.е. высокотемпературный отжиг приводит к постепенному исчезновению малоугловых границ между частицами СеО_{2-х}. Таким образом, можно утверждать, что наиболее устойчивыми к термическому воздействию являются порошки с минимальными значениями фрактальной размерности поверхности.

По данным ПЭМ, отжиг образцов СеО_{2-х} при температурах до 400°С не приводит к значимому увеличению размеров наночастиц. При 500-700°С наблюдается постепенный рост частиц, хорошо коррелирующий с зависимостями, полученными методом РГА. Следует отметить, что для образцов, отжигавшихся при низких (до 400°С) температурах, характерно узкое распределение частиц ПО

размерам. Напротив, существенной особенностью получаемых при высокотемпературном отжиге образцов является их полидисперсность.

Сопоставление микрофотографий исходных и отожженных образцов свидетельствует о том, что даже при наиболее высоких температурах сохраняются частицы, размер которых совпадает с размерами частиц в исходных порошках CeO_{2-x} (~4 нм).

Данный факт хорошо согласуется с моделью роста частиц по механизму ориентированного присоединения: припекание частиц в случае их значительной разориентации может быть затруднено даже при высоких температурах.

Из приведенных на рис. 9 данных МУРН следует, что исходные образцы CeO_{2-х} характеризуются достаточно узким мономодальным распределением частиц по размерам. Отжиг при 200°С приводит к появлению «плеча» на кривой распределения, обусловленного частичной дегидратацией остаточных гидроксосоединений церия, ведущей к увеличению размеров частиц. Этот процесс практически завершается при 400°С, и распределение частиц по размерам вновь становится мономодальным. Термическая обработка при высоких (600–700°C) температурах приводит к возникновению бимодального распределения частиц. При этом положение первого максимума остается практически неизменным, однако доля соответствующих частиц убывает; второй максимум при увеличении температуры смещается в область больших размытым. Полученные данные размеров И становится более четко свидетельствуют о том, что рост частиц СеО2-х происходит путем ИΧ последовательного сращивания.

Рис. 9. Распределения частиц по размерам для образцов CeO_{2-x}, отожженных при различных температурах.

Действительно, наличие первого максимума показывает, что малые частицы, размер которых COOTветствует размеру частиц в исходных образцах, сохраняются даже при высокотемпературном отжиге CeO_{2-х}, постепенно убывает. а ИХ доля Заметим, что рекристаллизация частиц по механизму Оствальда должна была приводить К смещению И размыванию первого максимума на кривой распределения, чего в данном случае не наблюдается.

3.3. Получение диоксида церия методом гомогенного осаждения

Метод гомогенного осаждения является одним из наиболее перспективных методов синтеза нанодисперсного CeO_{2-x}. Тем не менее, анализ литературы свидетельствует, что механизм образования наночастиц CeO_{2-x} из водных растворов нитрата церия(III) в присутствии ГМТА остается практически неизученным.

Согласно данным УФ-видимой спектроскопии, формирование СеО_{2-х} при смешении растворов Ce(NO₃)₃ и ГМТА наблюдается уже при комнатной температуре (20°С), однако скорость реакции в этих условиях весьма мала. При анализе данных РФА было установлено, что при температурах 20 и 30°С из растворов нитрата церия(III) и ГМТА осаждается гидроксокарбонат церия(III) (PDF 41-13) и кристаллическая фаза, не описанная в базе данных JCPDS (см. рис. 10). Повышение температуры синтеза до 40°С приводит к образованию CeO_{2-x} с примесью гидроксокарбоната церия(III). При дальнейшем повышении температуры до 50-90°С единственным твердофазным продуктом синтеза является однофазный диоксид церия (PDF 34-394) (рис. 10). Таким образом, формирование диоксида церия при гидролизе нитрата церия(III) в присутствии ΓΜΤΑ образования происходит через стадию нерастворимых гидроксосоединений церия(III) (в частности, гидроксокарбоната церия(III)), которые при относительно низких температурах являются устойчивыми, а при более высоких (50–90°С) быстро окисляются до CeO_{2-x}:

$$[Ce(H_2O)_n]^{3^+} + H_2O \rightarrow [Ce(OH)(H_2O)_{n-1}]^{2^+} + H_3O^+$$
(III.3.1)

$$[Ce(OH)(H_2O)_{n-1}]^{2+} + CO_3^{2-} \to Ce(OH)CO_3 + (n-1)H_2O$$
(III.3.2)

$$4Ce(OH)CO_3 + O_2 \rightarrow 4CeO_{2-x} + 2H_2O + 4CO_2$$
(III.3.3)

Ключевую роль в реакции образования CeO_{2-х} играют растворенные газы (кислород и углекислый газ). Было показано, что при обезгаживании растворов мощным ультразвуком процессы образования и роста CeO_{2-х} резко замедляются.

Данные УФ-видимой спектроскопии показали, что при выдерживании растворов Ce(NO₃)₃/ГМТА в изотермических условиях (50-90°C) происходит смещение края полосы поглощения CeO_{2-x} в область бо́льших длин волн, свидетельствующее об уменьшении ширины запрещенной зоны ($E_{\rm Ш33}$). Данный факт в дальнейшем использовался для контроля за процессом роста наночастиц CeO_{2-x} непосредственно в ходе синтеза. При рассмотрении динамики роста наночастиц CeO_{2-x} на зависимостях $E_{\rm Ш33}(\tau)$ можно выделить два участка, соответствующих основным стадиям процесса. На первой стадии наблюдается медленное уменьшение ШЗЗ, соответствующее постепенному увеличению размеров наночастиц CeO_{2-x}; на второй стадии происходит резкое уменьшение $E_{\rm Ш33}$, вызванное быстрым укрупнением частиц вследствие их агрегации (рис. 11).

Рис. 10. Рентгенограммы образцов, полученных при различных температурах.

Рис. 11. Зависимость ШЗЗ от продолжительности синтеза CeO_{2-х} для растворов с различным мольным соотношением Ce(NO₃)₃/ГМТА.

На рис. 12 представлены зависимости диаметра частиц СеО_{2-х} от продолжительности синтеза при 60°С для растворов с различным мольным соотношением Ce(NO₃)₃ и ГМТА. Видно, что увеличение избытка ГМТА оказывает существенное влияние на общую продолжительность синтеза и приводит к закономерному сокращению продолжительности стадии медленного роста наночастиц. Аналогичная зависимость наблюдается и при повышении температуры синтеза. Дополнительная информация о механизме образования СеО_{2-х} из растворов Се(NO₃)₃/ГМТА была получена на основании данных рНизотермической метрии. Установлено, что при обработке растворов $Ce(NO_3)_3/ГМТА в течение некоторого времени (<math>\tau_0$) наблюдается плавное снижение рН среды, при этом величина то соответствует также моменту быстрого выпадения осадка СеО_{2-х}. Было показано, что на динамику роста частиц значительно влияет скорость перемешивания растворов; в отсутствие перемешивания рост наночастиц подавляется.

Рис. 12. Зависимость диаметра частиц CeO_{2-x} от продолжительности синтеза для растворов с различным мольным соотношением Ce(NO₃)₃ и ГМТА.

РГА, размеры Согласно данным частиц полученных CeO_{2-x}, при увеличении мольного соотношения исходных реагентов от 1:3 до 1:10, 1:20 и 1:40 уменьшаются от 44 до 6 нм. Данные ПЭМ (рис. 13) подтверждают указанную тенденцию; анализ микрофотографий свидетельствует 0 TOM, что С увеличением мольного избытка ГМТА частицы CeO_{2-x} постепенно теряют огранку. Этот факт также может быть связан С более неравновесными При условиями синтеза. агрегации наночастиц CeO_{2-x} наблюдается ИХ взаимное ориентирование; как свидетельствуют данные ПЭМВР, впоследствии такие частицы могут когерентно сращиваться.

Рис. 13. Микрофотографии ПЭМ (А, В) и ПЭМВР (Б) образцов CeO_{2-x}, полученных из растворов Ce(NO₃)₃/ГМТА с мольным соотношением 1:3 (А, Б) и 1:10 (В).

3.4. Синтез нанокристаллического диоксида в условиях ГТ и ГТМВ обработки в нейтральных и щелочных средах

Анализ литературы свидетельствует, что на сегодняшний день отсутствует достоверная информация о воздействии микроволнового (MB) излучения на механизм и динамику роста наночастиц CeO_{2-x} в гидротермальных условиях. В связи с этим нами была поставлена задача по систематическому исследованию влияния MB излучения на процессы роста частиц CeO_{2-x} в нейтральных и щелочных средах. Для выявления специфических эффектов MB воздействия параллельно проводили эксперименты в аналогичных условиях (T, τ) с использованием обычной ГТ обработки. В качестве исходных использовали суспензии CeO_{2-x} с размером частиц ~3-4 нм.

По данным РФА, все порошки, полученные в результате ГТ и ГТМВ синтезов в нейтральных и щелочных средах, представляют собой однофазный диоксид церия со структурой флюорита.

Результаты сравнительного анализа данных РГА образцов диоксида церия, полученных в условиях ГТМВ и ГТ обработки при различных температурах в нейтральных средах, приведены на рис. 14. Видно, что ГТМВ синтез во всем исследованном температурном диапазоне приводит к формированию более дисперсных образцов. Следует также отметить, что размеры частиц в обеих сериях (ГТМВ и ГТ) слабо зависят от температуры обработки.

Варьирование продолжительности ГТМВ и ГТ синтеза также не сказывается на размерах ОКР получаемых нанопорошков диоксида церия. Данный факт свидетельствует о малой растворимости нанодисперсного CeO_{2-х} в гидротермальных средах и может служить подтверждением гипотезы о том, что рост наночастиц CeO_{2-х} в ГТ условиях осуществляется по механизму ориентированного присоединения.

Рис. 14. Размеры ОКР образцов CeO_{2-х}, синтезированных в ГТМВ (1) и ГТ (2) условиях (продолжительность обработки 3 ч).

Следует также отметить, что величины эффективных коэффициентов диффузии в МВ поле обычно существенно возрастают; таким образом, если бы рост наночастиц СеО_{2-х} в ГТ условиях происходил по механизму растворения-кристаллизации, то размеры частиц, получаемых в MB поле, должны превосходить размеры частиц в контрольных синтезах. Тем не менее, в действительности имеет место обратная зависимость, что дополни-

тельно свидетельствует в пользу механизма ориентированного присоединения.

Согласно данным ПЭМ, образцы CeO_{2-х}, полученные в условиях ГТМВ и ГТ обработки при различных температурах и продолжительностях синтеза в нейтральных средах, имеют изотропную форму. Установлено, что порошки, полученные в условиях МВ воздействия, характеризуются более узким распределением частиц по размерам по сравнению с образцами, полученными с использованием обычного ГТ метода (рис. 15). Указанные различия в микроморфологии продуктов ГТМВ и ГТ синтеза можно объяснить тем, что микроволновое излучение обеспечивает равномерный подвод тепловой энергии ко всему объему реакционной среды и существенно более высокую (~в 15 раз) скорость нагрева. Многократное сокращение времени нагрева до температур изотермической выдержки приводит к тому, что наночастицы CeO_{2-х} не успевают взаимно сориентироваться, и их последующий рост затрудняется.

Существенным недостатком ГТ и ГТМВ методов синтеза диоксида церия является высокая степень агрегированности получаемых наночастиц. В связи с этим, в настоящей работе был предложен новый метод ГТ синтеза слабоагрегированных порошков нанокристаллического CeO_{2-x} с контролируемым узким распределением частиц по размерам, основанный на ГТМВ обработке водных золей диоксида церия, синтезируемых методом анионитной обработки.

Было установлено, что гидрозоли диоксида церия обладают достаточно высокой агрегативной устойчивостью в том случае, если pH синтеза составляет 8.8–10. Процесс образования золей CeO_{2-x} при анионитной обработке описывается следующими уравнениями:

$$Ce(NO_3)_3 + 3[An]OH \rightarrow Ce(OH)_3 + 3[An]NO_3$$
(III.4.1)

 $Ce(OH)_{3} + H_{2}O \xrightarrow{_{603dyx}} [Ce(OH)_{x}(H_{2}O)_{y}]^{(4-x)^{+}}$ (III.4.2)

$$[Ce(OH)_{x}(H_{2}O)_{y}]^{(4-x)^{+}} \to CeO_{2-x} \cdot nH_{2}O + H_{3}O^{+}$$
(III.4.3)

ГТМВ обработка таких золей приводит к образованию изотропных, хорошо закристаллизованных наночастиц CeO_{2-x} (рис. 16), характеризующихся более

узким распределением частиц по размерам (рис. 15) по сравнению с образцами, полученными традиционными ГТ и ГТМВ методами.

Для синтеза анизотропных наночастиц CeO_{2-х} в настоящей работе была использована методика, основанная на ГТ и ГТМВ обработке суспензий CeO_{2-х} в растворах щелочей. Основными задачами явились определение оптимальных условий получения одномерных частиц CeO_{2-х} и установление механизма их образования в ГТ условиях. Для решения этих задач были проведены серии ГТ и ГТМВ синтезов при различных температурах (120-230°C) и продолжительностях (2-24 ч) обработки. Кроме того, в ряде экспериментов варьировали концентрацию щелочи в исходных суспензиях (см. табл. 6).

По данным РГА, при повышении температуры и продолжительности ГТМВ (ГТ) синтеза величины D_{OKP} закономерно увеличиваются; вместе с тем, коэффициент анизотропии, рассчитанный как D_{OKP}(111)/D_{OKP}(220), при варьировании параметров синтеза остается практически неизменным (0.9-1.2).

50 nm

Рис. 15. Распределения частиц по размерам в образцах CeO_{2-х}, полученных в условиях ГТМВ (1) и ГТ (2) обработки суспензий, ГТМВ (3) обработки золя CeO_{2-х} при температуре 120°C.

Рис 16. Микрофотография образца An-pH10-ГТМВ-Т120-t3.

Рис. 17. Микрофотографии ПЭМ и ПЭМВР образца Се-2-NaOH-5M-ГТМВ-Т120-t6.

18

Методом ПЭМ показано, что доля наностержней максимальна при относительно невысоких температурах (до 120°С) и продолжительностях синтеза. Образованию наностержней способствует и увеличение концентрации щелочи в реакционных средах. Интересно, что образование одномерных структур происходит даже при температурах порядка 60°С. При повышении температур ГТ и ГТМВ обработки до 150-230°С образцы содержат значительное количество частиц кубической формы и являются полидисперсными.

Совокупность данных ПЭМ, ПЭМВР (рис. 17) и РГА позволяет утверждать, что наностержни CeO_{2-x} в щелочных средах образуются по смешанному механизму, включающему стадии растворения-кристаллизации (об этом, в частности, свидетельствует зависимость размера и формы частиц от концентрации щелочи) и ориентированного присоединения частиц CeO_{2-x}.

Таблица 6. Данные РГА для образцов, полученных ГТ и ГТМВ обработкой суспензий СеО_{2-х} в щелочных средах.

	D _{ОКР} , нм			Коэффициент анизотропии
условные осозначения образцов	111	200	220	D _{ОКР} (111)/D _{ОКР} (220)
Ce-2-NaOH-2,5M-IT-T120-t2	7	8	8	0,9
Ce-2-NaOH-2,5M-FT-T120-t6	8	9	7	1,1
Ce-2-NaOH-2,5M-FT-T120-t24	19	21	16	1,2
Ce-2-NaOH-2,5M-FTMB-T120-t2	7	7	6	1,2
Ce-2-NaOH-2,5M-FTMB-T120-t3	7	8	6	1,2
Ce-2-NaOH-2,5M-FTMB-T120-t6	8	8	7	1,1
Ce-2-NaOH-2,5M-ГТМВ-Т120-t10	10	11	9	1,1
Ce-2-NaOH-5M-FTMB-T120-t6	10	10	9	1,1
Ce-2-NaOH-2,5M-MB-T150-t2	9	8	8	1,1
Ce-2-NaOH-2,5M-FTMB-T150-t3	9	10	8	1,1
Ce-2-NaOH-2,5M-FTMB-T150-t6	23	27	23	1,0
Ce-2-NaOH-2,5M-FTMB-T180-t2	21	24	21	1,0
Ce-2-NaOH-2,5M-FTMB-T180-t3	17	19	17	1,0
Ce-2-NaOH-2,5M-FTMB-T230-t3	22	21	19	1,2

2.5. Каталитическая активность образцов диоксида церия

является ключевым компонентом Диоксид церия катализаторов вследствие способности легко отдавать и поглощать кислород при повышенных температурах. Имеющиеся данные о зависимости кислородной нестехиометрии СеО_{2-х} от размера наночастиц позволяют предполагать, что наибольшей активностью должны обладать катализаторы, содержащие частицы СеО2-х минимального размера. В связи с этим в настоящей работе были проведены измерения активности катализаторов, приготовленных на основе порошков СеО_{2-х} с размером частиц 4–5 нм, полученных методом быстрого гидролиза (см. разд. 3.1) и обладающих максимальной удельной поверхностью (220 м²/г) и фрактальной размерностью поверхности (D_s=2.55). Катализаторы Cu/CeO_{2-x}, Со/CeO_{2-x}, Fe/CeO_{2-x}, Ni/CeO_{2-x}, NiMg/CeO_{2-x} и Au/CeO_{2-x} готовили методом пропитки по влагоемкости, позволяющим добиться высокой дисперсности нанесенного компонента.

На рис. 18 представлены зависимости конверсии СО от температуры в смеси 4%CO/2.05%O₂/93.95%Не на полученных катализаторах. Установлено, что самая низкая температура (67°С) полной конверсии СО (99%) достигается на медьсодержащем катализаторе. Высокую активность проявляют также катализаторы, содержащие никель, кобальт и золото. Следует отметить, что полученные в работе образцы обладают более высокой активностью по сравнению с катализаторами аналогичного состава, описанными в литературе.

В связи с тем, что наиболее низкая температура полной конверсии СО наблюдалась для медьсодержащих систем, было проведено дополнительное исследование по окислению СО в смесях, богатых водородом. Селективное окисление монооксида углерода исследовалось на катализаторах на основе диоксида церия с различным содержанием меди (от 1 до 30% по массе) в интервале температур 20-300°С (состав газовой смеси: $N_2 - 0.3\%$, $O_2 - 2.3\%$, CO – 0.86%, He – 46.54%, H₂ – 50%).

Таблица 7. Селективное окисление СО на медно-цериевых катализаторах

Содержание Си, % масс.	Т _{50%} конверсии, ^о С	Т _{99,5%} конверсии, ^о С
1	100	140
3	100	120
5	60	105
10	50	110
20	80	115
30	70	90

Рис.18. Температурная зависимость степени конверсии СО для катализаторов МО_x/CeO_{2-x} и Au/CeO_{2-x}.

Установлено, что все исследованные каталитические системы являются активными в селективном окислении СО (табл. 7); 50% конверсия СО достигается при температуре 100°С и ниже, а полная конверсия (99,5%) наблюдается в интервале температур 90-140°С. Наиболее активной в селективном окислении СО оказалась системы с содержанием меди 5-10%, для которых температуры 50 и 99,5%-ной конверсии составили 50-60°С и 105-110°С, соответственно.

2.6. Биологическая активность нанокристаллического CeO_{2-x}

В ряде недавних работ [2, 3] было показано, что нанокристаллический диоксид церия обладает биологической (антиоксидантной) активностью. В настоящей работе впервые проведены исследования воздействия нанокристаллического диоксида церия на бактерии *Escherichia coli*. В качестве тест-объекта был выбран генно-инженерный штамм TG1, интенсивность

биолюминесценции которого коррелирует с ферментативной активностью бактерий.

Нами установлено, что интенсивность биолюминесценции как в присутствии, так и в отсутствии диоксида церия с течением времени уменьшается, однако скорость ингибирования ферментативной активности при внесении СеО_{2-х} в культуры бактерий резко снижается. На рис. 19 показаны нормированные (I/I₀) зависимости интенсивности люминесценции от времени, из которых следует, что при уменьшении размера частиц СеО_{2-х} биоактивность порошков диоксида церия существенно возрастает. Наблюдаемое влияние размерного фактора на биоактивность нанопорошков CeO_{2-х} может быть ранее в литературе увеличением объемной объяснено описанным и поверхностной нестехиометрии наночастиц СеО_{2-х} с уменьшением их размеров, способность повышающим ИΧ реакционную по отношению К кислородсодержащим соединениям и радикалам.

Таблица 8. Условия синтеза и основные			
характеристики образцов.			
D _{OKP} ,	C(CeO _{2-x}),		
нм	мг/л		
<5	20, 200,		
~5	20000		
5	200		
e	200		
0	200		
8	200		
	синтеза теристин D _{ОКР} , HM <5 5 6 8		

Рис. 19. Относительная интенсивность люминесценции бактерий в присутствии CeO_{2-x} с различным размером частиц.

Показано, что с увеличением концентрации суспензий CeO_{2-x} наблюдаемый эффект снижения скорости ингибирования ферментативной активности возрастает. Вплоть до максимальной концентрации (20000 мг/л) суспензии CeO_{2-x} не обладают токсичностью по отношению к тест-культуре.

Цитируемая литература

- 1. Гегузин Я.Е. Физика спекания. 2-е изд., перераб. и доп. М.: Наука. 1984. 312 с.
- 2. Chen J., Patil S., Seal S., McGinnis J.F. // Nature Nanotech. 2006. V. 1 P. 142-150.
- 3. Rzigalinski B.A. // Technology in Cancer Res. & Treatment. 2005. V. 4. P. 651-659.

выводы

1. Исследованы процессы формирования нанодисперсного диоксида церия при осаждении из водно-изопропанольных и водно-этанольных растворов нитрата церия(III). Установлено, что изменение соотношения вода/спирт и концентрации Ce(NO₃)₃ позволяет направленно варьировать как размер наночастиц CeO_{2-x}, так и характер их агрегации, приводя к изменениям величин удельной поверхности и фрактальной размерности поверхности нанопорошков диоксида церия.

2. С применением комплекса аналитических методов определены закономерности роста наночастиц CeO_{2-х} при высоких температурах (до 700°С). Предложены критерии выбора методов синтеза нанопорошков CeO_{2-х}, устойчивых к высокотемпературным воздействиям.

3. Установлен механизм образования диоксида церия при синтезе методом гомогенного гидролиза Ce(III) в присутствии гексаметилентетрамина. Показано, что основным промежуточным продуктом синтеза является гидроксокарбонат церия(III). Определены основные факторы (температура синтеза, концентрация исходных растворов), влияющие на динамику роста частиц CeO_{2-x}.

4. Проведены систематические сравнительные исследования влияния параметров гидротермального и гидротермально-микроволнового синтеза (pH среды, температура, продолжительность) на размеры и микроморфологию наночастиц диоксида церия. Установлены оптимальные условия получения CeO_{2-x}. Разработан новый наностержней метод получения изотропных наночастиц CeO_{2-x}, слабоагрегированных основанный на сочетании анионитной обработки нитрата церия(III) с гидротермальномикроволновой обработкой образующихся золей CeO_{2-x}.

5. Разработан метод получения высокоэффективных катализаторов на основе диоксида церия, не содержащих благородных металлов, для глубокого окисления монооксида углерода. Показано, что 99% конверсия СО в смесях 4%CO/2.05%O₂/Не на катализаторах CuO/CeO_{2-х} достигается уже при 67°C.

6. Показано, что полученные образцы катализаторов CuO/CeO_{2-х} проявляют активность в процессах селективного окисления CO в газовых смесях, обогащенных водородом, в диапазоне 90–300°C. Установлено, что высокую эффективность демонстрируют катализаторы с 5–10% содержанием меди.

7. Впервые проведены исследования воздействия нанокристаллического диоксида церия на бактерии Escherichia coli. Показано, что ферментативная активность бактерий многократно повышается в присутствие нанопорошков Впервые установлено, биологическая активность CeO_{2-x}. ЧТО CeO_{2-x} наночастиц. определяется размером Установлена концентрационная зависимость биологической активности CeO_{2-x} по отношению к Escherichia coli.

Основные результаты диссертации опубликованы в работах:

1. Иванов В.К., Шариков Ф.Ю., Полежаева О.С., Третьяков Ю.Д. Формирование нанокристаллического диоксида церия из водно-спиртовых растворов нитрата церия (III) // Докл. РАН, серия «Химия». 2006. Т. 411. № 4. С. 485-487.

2. Полежаева О.С., Ярошинская Н.В., Иванов В.К. Синтез нанодисперсного диоксида церия с контролируемым размером частиц и шириной запрещенной зоны // Журн. неорган. химии. 2007. Т. 52. №8. С. 1266-1271.

3. Полежаева О.С., Ярошинская Н.В., Иванов В.К. Механизм образования нанокристаллического диоксида церия из водных растворов нитрата церия (III) и гексаметилентетрамина // Неорган. материалы. 2008. Т.44. №1. С. 57-63.

4. Иванов В.К., Полежаева О.С., Копица Г.П., Баранчиков А.Е., Третьяков Ю.Д. Фрактальная структура нанодисперсных порошков диоксида церия // Неорган. материалы. 2008. Т.44. №3. С. 324-330.

5. Иванов В.К., Федотов Г.Н., Никулина М.В., Полежаева О.С., Омельянюк Г.Г., Романенко С.Н., Король С.Г., Третьяков Ю.Д. Биологическая активность нанодисперсного диоксида церия // Докл. РАН, серия «Химия». 2008. Т.420. №5. С. 628-631.

6. Дробот Д.В., Чуб А.В., Воронов В.В., Федоров П.П., Иванов В.К., Полежаева О.С. Получение наночастиц диоксида церия // Неорган. материалы. 2008. Т.44. №8. С. 966-968.

7. Полежаева О.С. Синтез нанодисперсных диоксидов церия и олова, и химическое модифицирование их поверхности // Тез. докл. XIII Международной молодежной научной конференции студентов, аспирантов и молодых ученых «Ломоносов», Москва, 12-15 апреля 2006. Т. IV. С. 454-455.

8. Polezhaeva O.S., Ivanov V.K. Synthesis of nanocrystalline ceria and chemical modification of its surface // Abstracts of «Structural chemistry of partially ordered systems, nanoparticles and nanocomposites» conference. Saint-Petersburg, June 27-29, 2006. P.53-54.

9. Полежаева О.С., Иванов В.К., Копица Г.П., Григорьев С.В., Pranzas К. Малоугловое рассеяние нейтронов на нанодисперсных порошках диоксида церия // Тез. докл. VI Национальной конференции по применению рентгеновского, синхротронного излучений нейтронов и электронов для исследования материалов (РСНЭ-2007). Москва, 12-17 ноября 2007. С. 350.

10. Полежаева О.С., Иванов В.К., Шариков Ф.Ю., Третьяков Ю.Д. Синтез нанодисперсного диоксида церия с фрактальными свойствами поверхности // Тез. докл. VI Международного семинара «Нелинейные процессы и проблемы самоорганизации в современном материаловедении». Астрахань, 22-25 ноября, 2006. С. 61-63.

11. Ярошинская Н.В., Полежаева О.С. Синтез нанокристаллического диоксида церия с контролируемым размером частиц // Тез. докл. XIV Международной

молодежной научной конференции «Ломоносов-2007». Москва, 11-14 апреля 2007. С.45.

12. Полежаева О.С., Иванов В.К. Синтез нанокристаллических порошков диоксида церия с контролируемым размером частиц и шириной запрещенной зоны – прекурсоров для получения высокоплотной керамики // Тез. докл. Российской конф. с международным участием «Ионный перенос в органических и неорганических мембранах». Краснодар, 22-25 мая 2007. С. 147-149.

13. Полежаева О.С., Иванов В.К., Шариков Ф.Ю. Механизм формирования нанокристаллического CeO_2 из водно-спиртовых растворов $Ce(NO_3)_3 \cdot 6H_2O$ // Abstracts of XVI International Conference on Chemical Thermodynamics in Russia (RCCT 2007). Suzdal, 1-6 July 2007. V.1. P.3S/330-331.

14. Ivanov V.K., Polezhaeva O.S., Shaporev A.S. Controlled synthesis of nanocrystalline ceria particles // Abstracts of E-MRS 2007 Fall Meeting. Warsaw, 17-21 September, 2007. P.31-32

15. Полежаева О.С., Ярошинская Н.В., Иванов В.К. Физико-химические основы получения нанокристаллического диоксида церия с контролируемым размером частиц и шириной запрещенной зоны // Тез. докл. XVIII Менделеевского съезда по общей и прикладной химии. Москва, 23-28 сентября, 2007 г. Т.2. С. 459.

16. Полежаева О.С., Ярошинская Н.В., Иванов В.К. Формирование нанопорошков CeO₂ с фрактальными свойствами поверхности // Тез. докл. XVIII Менделеевского съезда по общей и прикладной химии. Москва, 23-28 сентября, 2007 г. Т.2. С. 460.

17. Полежаева О.С., Иванов В.К. Синтез нанокристаллического диоксида церия с контролируемым размером частиц с применением методов «мягкой химии» // Тез. докл. 6 Всероссийской школы-конференции «Нелинейные процессы и проблемы самоорганизации в современном материаловедении (индустрия наносистем и материалов)». Воронеж, 14-20 октября 2007, С. 170-171.

18. Lermontov A.S., Polezhaeva O.S., Yakimova M.S., Bulgakov I.A., Tretjakov V.F., Vanetsev A.S., Ivanov V.K. Novel catalysts for CO removal based on nanocrystalline ceria // Abstracts of Asian symposium on advanced materials: Chemistry, physics and biology. Vladivostok, 4-9 October 2007. P. 381-382.

19. Полежаева О.С., Иванов В.К., Федотов Г.Н. Биологическая активность диоксида церия // Тез. докл. «Полифукциональные наноматериалы и нанотехнологии». Томск, 19-22 сентября 2008. Т.1. С. 108-109.

20. Гиль Д.О., Полежаева О.С., Иванов В.К. Формирование одномерных наноструктур диоксида церия // Тез. докл. «Полифукциональные наноматериалы и нанотехнологии». Томск, 19-22 сентября 2008. Т.1. С. 143-145.